matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrizenmultiplikation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - Matrizenmultiplikation
Matrizenmultiplikation < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizenmultiplikation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:20 Fr 22.05.2009
Autor: Fawkes

Aufgabe
1) Man zeige, dass für jede m × n-Matrix A gilt: [mm] E_{m} [/mm] · A = A.
2) Sei [mm] 0_{n} [/mm] die n × n-Nullmatrix. Man zeige [mm] 0_{n} [/mm] · A = A · [mm] 0_{n} [/mm] = [mm] 0_{n} [/mm] ∀A ∈ [mm] M_{n}(K). [/mm]
3) Man finde zwei n × n-Matrizen A,B [mm] \not= [/mm] 0 mit A · B = 0. Kann man dabei A = B wählen?

hallo,
also die aufgaben hab ich alle mit hinschreiben der matrizen also vielen pünktchen und viel geschreibe gemacht. meine frage ist deshalb ob diese aufgaben auch anderes zu zeigen sind, sprich mit der summenschreibweise in bezug auf die matrizenmultiplikation. und zu der dritten hab ich raus das man A nicht gleich B wählen kann ist das richtig oder gibt es doch eine möglichkeit? danke schon mal vorweg.
gruß fawkes

        
Bezug
Matrizenmultiplikation: Teil3.)
Status: (Antwort) fertig Status 
Datum: 23:51 Fr 22.05.2009
Autor: XPatrickX

Hallo,


wähle [mm] A=B=\pmat{ 0 & 1 \\ 0 & 0 } [/mm]
Dann ist [mm] A*B=A^2=0 [/mm]


Gruß Patrick

Bezug
        
Bezug
Matrizenmultiplikation: Teil2)
Status: (Antwort) fertig Status 
Datum: 23:54 Fr 22.05.2009
Autor: XPatrickX

Sei B=A*0 bzw. B'=0*A
Es reicht ja wenn du zeigst [mm] b_{ij}=b'_{ij}=0 [/mm] für alle i,j=1,...n. Überlege dir wie [mm] b_{ij} [/mm] bzw $b'_{ij}$ definiert ist über die Summenschreibweise.

Bezug
                
Bezug
Matrizenmultiplikation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:06 Sa 23.05.2009
Autor: Fawkes

also die summen hab ich mir jetzt wie folgt überlegt:
[mm] b_{ij}=\summe_{l=1}^{n}a_{il}*0_{lj}=0 [/mm]
[mm] b'_{ij}=\summe_{l=1}^{n}0_{il}*a_{lj}=0 [/mm]
ist das so richtig und wenn ja reicht das dann so?
und kann man die aufgabe mit der einheitsmatrix auch mit hilfe von summen schreiben? danke wie immer schon mal vorweg :)

Bezug
                        
Bezug
Matrizenmultiplikation: Antwort
Status: (Antwort) fertig Status 
Datum: 08:04 So 24.05.2009
Autor: angela.h.b.


> also die summen hab ich mir jetzt wie folgt überlegt:
>  [mm]b_{ij}=\summe_{l=1}^{n}a_{il}*0_{lj}=0[/mm]
>  [mm]b'_{ij}=\summe_{l=1}^{n}0_{il}*a_{lj}=0[/mm]
>  ist das so richtig und wenn ja reicht das dann so?

Hallo,

wenn Du das Drumherum mit aufschreibst: ja.

>  und kann man die aufgabe mit der einheitsmatrix auch mit
> hilfe von summen schreiben?

Klar.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]