matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenLipschitzbedingung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Lipschitzbedingung
Lipschitzbedingung < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lipschitzbedingung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:06 Di 03.11.2015
Autor: mathenoob3000

Aufgabe
Sei $f(t,x) := [mm] \begin{cases} 2t & x\leq 0 \\ 2t - \frac{2x}{t} & 0 < x < t^2, (t,x) \in [-1,1]^2 \\ 0 & t^2 \leq x \end{cases}$ [/mm]

Zeige oder wiederlege: f erfüllt Lipschitz Bedingung bzgl x auf dem Definitionsbereich

Für den ersten und dritten Fall kann ich meine Lipschitz-konstante $L > 0$ doch beliebeg wählen, weil $ |f(t,x) - f(t,x')| = 0 [mm] \leq [/mm] L | x - x' | $

und beim zweiten Fall:

$ |f(t,x) - f(t,x')| = | 2t - 2x/t - (2t - 2x'/t) | = [mm] \frac{2}{t} [/mm] | x' - x | $

kann mann dann $ L [mm] \geq \frac{2}{t} [/mm] $ wählen oder darf L nicht von t abhängen?

        
Bezug
Lipschitzbedingung: Antwort
Status: (Antwort) fertig Status 
Datum: 05:39 Mi 04.11.2015
Autor: fred97


> Sei [mm]f(t,x) := \begin{cases} 2t & x\leq 0 \\ 2t - \frac{2x}{t} & 0 < x < t^2, (t,x) \in [-1,1]^2 \\ 0 & t^2 \leq x \end{cases}[/mm]
>  
> Zeige oder wiederlege: f erfüllt Lipschitz Bedingung bzgl
> x auf dem Definitionsbereich
>  Für den ersten und dritten Fall kann ich meine
> Lipschitz-konstante [mm]L > 0[/mm] doch beliebeg wählen, weil
> [mm]|f(t,x) - f(t,x')| = 0 \leq L | x - x' |[/mm]
>  
> und beim zweiten Fall:
>  
> [mm]|f(t,x) - f(t,x')| = | 2t - 2x/t - (2t - 2x'/t) | = \frac{2}{t} | x' - x |[/mm]
>  
> kann mann dann [mm]L \geq \frac{2}{t}[/mm] wählen oder darf L nicht
> von t abhängen?


Wir nehmen mal an, f gnüge ener Lipschitzbedingung bezüglich x.

Dann ex. also ein L [mm] \ge [/mm] 0 mit

   $|f(t,x)-f(t,x')| [mm] \le [/mm] L|x-x'|$   für alle (t,x) im Def.-Bereich von f.


Dann gilt also

   [mm] \frac{2}{t} | x - x'| \le L |x-x'|[/mm]  für t [mm] \in [/mm] (0,1] und x,x'>0 mit x,x' < [mm] t^2 [/mm]

Wähle nun [mm] x=t^2/2 [/mm] und [mm] x'=t^2/4, [/mm] so bekommst Du:

       [mm] $\frac{2}{t} \le [/mm] L$

und das für alle t [mm] \in [/mm] (0,1] ! Geht das gut ?

FRED

Bezug
                
Bezug
Lipschitzbedingung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:41 Mi 04.11.2015
Autor: mathenoob3000

Nein denn 2/t geht natürlich gegen unendlich für t gegen 0.

Danke!

Bezug
                        
Bezug
Lipschitzbedingung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:48 Mi 04.11.2015
Autor: mathenoob3000

aber warum muss ich x und x' so wählen. Reicht es nicht wenn ich schreibe
$ [mm] \frac{2}{t} [/mm] | x - x'| [mm] \leq [/mm] L |x - x'|  [mm] \Rightarrow [/mm] L [mm] \geq \frac{2}{t} [/mm] ... $

Bezug
                                
Bezug
Lipschitzbedingung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:18 Mi 04.11.2015
Autor: fred97


> aber warum muss ich x und x' so wählen.

Du musst x und x' nicht so wählen. Du kannst die auch anders wählen, Hauptsache, Du kommst zu einem Widerspruch.



> Reicht es nicht
> wenn ich schreibe
>  [mm]\frac{2}{t} | x - x'| \leq L |x - x'| \Rightarrow L \geq \frac{2}{t} ...[/mm]

Von mir aus, wenn Deine Chefs damit zufrieden sind ......


FRED


Bezug
                                        
Bezug
Lipschitzbedingung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:51 Mi 04.11.2015
Autor: mathenoob3000

Aber wieso muss ich x x' ueberhaupt irgendwie  wählen. Es muss doch für alle x x' gelten.

Bezug
                                                
Bezug
Lipschitzbedingung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:49 Mi 04.11.2015
Autor: mathenoob3000

ok sorry, habs jetzt kapiert :)



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]