matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Lineare Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe Klassen 8-10" - Lineare Funktionen
Lineare Funktionen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Funktionen: Lösungsansatz
Status: (Frage) beantwortet Status 
Datum: 17:42 Di 26.06.2007
Autor: Markus1007

Aufgabe
Die Herstellung einer Substanz S erfordert bei Verfahren A die Kosten
[mm] K_A [/mm] (x) =2,8x+150  (EUR)
(x-Mengeneinheit von S), bei Verfahren B die Kosten
[mm] K_B [/mm] (x) =3x+220
Der Verkaufspreis von 1 ME (hergestellt nach Verfahren A) beträgt 4,70 EUR, von 1 ME (hergestellt nach Verfahren B) beträgt 5,00 EUR.
Ab welcher Anzahl von ME verspricht der Verkauf von der Substanz S (hergestellt nach Verfahren B) einen höheren Ertrag als der Verkauf von S (hergestellt nach A)?
(Grafische und rechnerische Lösung erbeten)  

Hey,

Ich hab mal wieder gar keinen Lösungsansatz!
Ich hab noch nicht ganz verstanden wie ich 4,7 und 5,0 in die Lösung mit ein Arbeiten muß!
Kann mir bitte jemand helfen?

Grüsse Markus

        
Bezug
Lineare Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 Di 26.06.2007
Autor: Kroni

Hi,

> Die Herstellung einer Substanz S erfordert bei Verfahren A
> die Kosten
>  [mm]K_A[/mm] (x) =2,8x+150  (EUR)
>  (x-Mengeneinheit von S), bei Verfahren B die Kosten
>  [mm]K_B[/mm] (x) =3x+220
>  Der Verkaufspreis von 1 ME (hergestellt nach Verfahren A)
> beträgt 4,70 EUR, von 1 ME (hergestellt nach Verfahren B)
> beträgt 5,00 EUR.
>  Ab welcher Anzahl von ME verspricht der Verkauf von der
> Substanz S (hergestellt nach Verfahren B) einen höheren
> Ertrag als der Verkauf von S (hergestellt nach A)?
>  (Grafische und rechnerische Lösung erbeten)  
>
> Hey,
>  
> Ich hab mal wieder gar keinen Lösungsansatz!
>  Ich hab noch nicht ganz verstanden wie ich 4,7 und 5,0 in
> die Lösung mit ein Arbeiten muß!
>  Kann mir bitte jemand helfen?

So.

Wir wissen, dass es zwei Verfahren gibt, um eine Substanz S herzustellen:
Wir möchten x Mengeneinheiten von der Substanz S herstellen:

Verfahren A:

Kosten für die Herstellung:

[mm] $K_a(x)=2.8x+150$ [/mm]

Gewinn bei einer ME S: 4.70€/Mengeneinheit.

Verfahren B:

Kosten für die Herstellung:

[mm] $K_b(x)=3x+220$ [/mm]

Gewinn bei einer ME S: 5.00€/Mengeneinheit

Nun müssen wir gucken, wie wir Verlust und Gewinn zusammenbekommen:

Angenommen, wir stellen eine Einheit S nach Verfahren a her.
Das kostet uns:
2.8+150=152.8€

Wir machenan einer ME, die wir für 152.8€ herstellen aber auch einen Gewinn von 4.70€. Mach also insgesamt ein Verlust von 152.8€-4.70€=148,1€

Allgemein kann man das dann für Verfahren a so schreiben:

Einnahmen E(x)=G(x)-K(x), also: Einnahmen ist die Differenz aus Ausgaben K(x) und dem Gewinn pro Einheit.

Also: [mm] E_a(x)=4.70x-2.8x-150=1.9x-150 [/mm]

Das ist die Gewinnfunkton, die du hast.
Das selbe musst du jetzt nur mit Verfahren b machen.

Jetzt musst du dann nur noch guckn, wann sich die beiden Geraden schneiden. Denn [mm] E_b [/mm] liegt zunächst unter [mm] E_a, [/mm] dann schneiden die sich, und dann ist [mm] E_b [/mm] über [mm] E_a, [/mm] und danach ist gefragt.

LG

Kroni

>  
> Grüsse Markus


Bezug
                
Bezug
Lineare Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:08 Di 26.06.2007
Autor: Markus1007

Hey,

Danke,genau das wollte ich wissen!
Den rest bekomm ich selbst hin.

Grüsse Markus

Bezug
                
Bezug
Lineare Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:10 Di 26.06.2007
Autor: Markus1007

Hey,

war nen bisschen voreillig mit meiner Antwort!
Ich habe gerechnet und vollgendes rausbekommen!

[mm] E_A [/mm] (x) =1,9x-150
[mm] E_B [/mm] (x) =2x-220
und dann beide Funktionen gleichgestellt!

[mm] 1,9x-150=2x-220\qquad [/mm] -2x
[mm] -0,1x-150=-220\qquad [/mm] +150
[mm] -0,1x=-70\qquad [/mm] /0,1
x=-700

Wenn ich nun y Auflöse bekomm ich bei der Probe zwei verschiedene Ergebnisse. Wo liegt denn mein Fehler? Wenn x nicht -700 sondern700 wär würde es passen!
Wer kann mir helfen?

Grüsse Markus

Bezug
                        
Bezug
Lineare Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:21 Di 26.06.2007
Autor: Analytiker

Hi Markus,

Du hast einen Rechenfehler:

-> 1,9x - 150 = 2x - 220 | -2x | +150
-> -0,1x = -70 | :(-0,1)
-> x = 700

und alles ist gut!

Liebe Grüße
Analytiker
[lehrer]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]