matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenLimes
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Limes
Limes < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Limes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:20 So 28.05.2006
Autor: Aeryn

Aufgabe
Berechnen Sie:
lim x->0 [mm] \bruch{sin x}{ln (1+x)} [/mm]
lim x->0 [mm] \bruch{cos x-1}{e^x-1} [/mm]

Hi!
Verstehe ich das richtig, dass ich hierbei nur 0 für x einsetze und ausrechne???
dann würde beim 1. 0 und beim 2. 0,99984 rauskommen. Ich glaub aber das stimmt nicht ganz.
Lg Aeryn

        
Bezug
Limes: l'Hospital
Status: (Antwort) fertig Status 
Datum: 21:40 So 28.05.2006
Autor: mathmetzsch

Hallo,

deiner Bemerkung nach zu urteilen, hast du Grenzwerte nicht wirklich verstanden. Da steht beide Male, wenn [mm] x\to\infty [/mm] ein Ausdruck der Form "0/0" und das schreit nach den []Regeln von de l'Hospital.

Ich zeigs dir mal am ersten Beispiel:

Dazu musst du Zähler-und Nennerterm getrennt ableiten:
[mm] \limes_{x\rightarrow0}\bruch{sin(x)}{ln(x+1)} [/mm]
[mm] =\limes_{x\rightarrow0}\bruch{cos(x)}{\bruch{1}{x}} [/mm]
[mm] =\limes_{x\rightarrow0}x*cos(x) [/mm]
=0

Alles klar?

Viele Grüße
Daniel



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]