matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisLegendre
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Legendre
Legendre < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Legendre: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:04 Sa 12.11.2005
Autor: brain86

Hallo, ich hab einige Probleme bei folgender Aufgabe... kann mir jemd. helfen?
Es sei H = [mm] L^2(-1,+1). [/mm] Ich soll zeigen, dass das System
[mm] (P_n(x))_{n \in \mathbb{N}} [/mm]
der sog. Legendre Polynome

[mm] P_n(x)= \frac{1}{2^nn!} \frac{d^n}{dx^n}(x^2-1)^n [/mm]

ein orthogonales System in H ist.

(H=Hilbertraum)

        
Bezug
Legendre: Antwort
Status: (Antwort) fertig Status 
Datum: 22:06 Sa 12.11.2005
Autor: soulid

ok, ich denke Junek-geplagte Studenten sollten sich gegenseitig helfen, also:
hier muss bewiesen werden, das [mm] P_n [/mm] auf [-1,1] bezüglich des Skalarproduktes (f,g)= [mm] \integral_{-1}^{1} [/mm] {f(x) g(x) dx} ein Orthogonalsystem bilden.
Als Hinweis kannst hier nehmen, das es reicht für [mm] 0\le [/mm] m < n zu zeigen
[mm] \integral_{-1}^{1} {x^m P_n (x) dx}=0, [/mm] weil sich das Integral aus der part. Integration ergibt.
nun musst du für n  [mm] \not= [/mm] m zeigen, dass  [mm] \integral_{-1}^{1} {P_m P_n dx}=0 [/mm] ist, weil [mm] P_m [/mm] ein Polynom vom Grad m<n ist, reicht es aber offenbar zu zeigen, daß  [mm] \integral_{-1}^{1} {x^m P_n dx}=0 [/mm] für alle 0  [mm] \le [/mm] m< n gilt.
dies ergibt sich durch part. Int., wobei man hier noch ausnutzen kann, dass die Fkt. [mm] (x^2 -1)^n [/mm] in x= [mm] \pm [/mm] 1 jeweils eine Nullstelle n-ter Ordnung hat, d.h. dass dort sämtliche Ableitungen von kleiner Ordnung als n verschwinden, wenn man das jetzt berücksichtigt, ergibt sich mit part. Int.:
[mm] \integral_{-1}^{1} {x^m \bruch{d^m}{dx^n}[(x^2 -1)^n] }= [/mm]
[mm] =x^m \bruch{d^{n-1}}{dx^{n-1}}[(x^2 -1)^n]|^1 [/mm] -1
- [mm] \integral_{-1}^{1} {x^{m-1} \bruch{d^{m-1}}{dx^{n-1}}[(x^2 -1)^n]} [/mm]
= [mm] \integral_{-1}^{1} {x^{m-1} \bruch{d^{m-1}}{dx^{n-1}}[(x^2 -1)^n]} [/mm]
wiederholte Anwendung führt dann zum Abbau der x-ten Potenzen und dann ergibt sich:
[mm] \integral_{-1}^{1} {x^m \bruch{d^n}{dx^n} [(x^2 -1)^n]} [/mm]
[mm] =(-1)^m \integral_{-1}^{1} [/mm] { [mm] \bruch{d^{n-m}}{dx^{n-m}} [(x^2 -1)^n]}=0 [/mm]
die letzte Gleichung gilt wieder, weil  [mm] \bruch{d^{n-m}}{dx^{n-m}} [(x^2 -1)^n] [/mm]  eine Stammfunktion zum Integranden ist, die an dem Intervallgrenzen x= [mm] \pm [/mm] 1 verschwindet.
ich hoffe du kannst was damit anfangen
ich hoffe das alles richtig erstellt wurde, hab das erste mal mit dem formeleditor gearbeitet

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]