matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikLandau-Symbole
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Numerik" - Landau-Symbole
Landau-Symbole < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Landau-Symbole: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:28 Fr 19.07.2013
Autor: algieba

Aufgabe
Man schreibe die folgenden Ausdrücke in der Form $f(h) = [mm] O(h^p)$, [/mm] für $h [mm] \searrow [/mm] 0$ mit möglichst großem $p [mm] \in \IN$, [/mm] bzw. $g(n) = [mm] O(n^q)$ [/mm] für $n [mm] \nearrow \infty$ [/mm] mit möglichst kleinem [mm] $q\in\IN$: [/mm]

a) $f(h) = [mm] 4(h^2+h)^2-4h^4$ [/mm]

b) $g(n) = [mm] 4(n^2+n)^2-4n^4$ [/mm]

...


Hallo

Ich habe solch eine Aufgabe noch nie gelöst, kann mir da jemand einen Tipp geben?
Ich kann den Ausdruck umformen zu $f(h) = [mm] 8h^3+4h^2$ [/mm]

Die Definition lautet:
$f(h) = [mm] O(h^p)$ [/mm]
[mm] $\Leftrightarrow$ [/mm] für kleine [mm] $h\in [/mm] (0, [mm] h_0]$ [/mm] mit einer Konstanten $c [mm] \leq [/mm] 0$ gilt: $|f(h)| [mm] \leq [/mm] c [mm] |h^p|$ [/mm]

Was ist überhaupt die Aufgabe? Muss ich das $c$ finden? Oder das $p$?

Vielen Dank

EDIT: Schreibfehler entfernt


        
Bezug
Landau-Symbole: Antwort
Status: (Antwort) fertig Status 
Datum: 11:00 Fr 19.07.2013
Autor: fred97


> Man schreibe die folgenden Ausdrücke in der Form [mm]f(h) = O(h^p)[/mm],
> für [mm]h \searrow 0[/mm] mit möglichst großem [mm]p \in \IN[/mm], bzw.
> [mm]g(n) = O(n^q)[/mm] für [mm]n \nearrow \infty[/mm] mit möglichst kleinem
> [mm]q\in\IN[/mm]:
>  
> a) [mm]f(h) = 4(h^2+h)^2-4h^4[/mm]
>  
> b) [mm]g(n) = 4(n^2+n)^2-4n^4[/mm]
>
> ...
>  
> Hallo
>  
> Ich habe solch eine Aufgabe noch nie gelöst, kann mir da
> jemand einen Tipp geben?
>  Ich kann den Ausdruck umformen zu [mm]f(h) = 8h^3+4h^2[/mm]
>  
> Die Definition lautet:
> [mm]f(h) = O(h^p)[/mm]
>  [mm]\Leftrightarrow[/mm] für kleine [mm]h\in (0, h_0][/mm]
> mit einer Konstanten [mm]c \leq 0[/mm] gilt: [mm]|f(h)| \leq c |h^p|[/mm]

Du meinst sicher c [mm] \ge [/mm] 0.

>  
> Was ist überhaupt die Aufgabe? Muss ich das [mm]c[/mm] finden? Oder
> das [mm]p[/mm]?

Ich übersetze mal:

$ f(h) = [mm] O(h^p) [/mm] $, für $ h [mm] \searrow [/mm] 0 $ bedeutet: es gibt ein [mm] h_0>0 [/mm] so, dass der Quotient

     [mm] Q(h):=\bruch{f(h)}{h^p} [/mm]  für h [mm] \in (0,h_0] [/mm]

beschränkt ist.

Zu a) Nach Ausmultiplizieren ist

    [mm] f(h)=8h^3+4h^2, [/mm]

also

    [mm] Q(h)=\bruch{8h^3+4h^2}{h^p}. [/mm]

Nun orgeln wir das mal durch:

p=1: Dann ist [mm] Q(h)=8h^2+4h. [/mm] Prima ! Das bleibt in der Nähe von 0 beschränkt.

p=2: Dann ist Q(h)=8h+4. Wieder prima ! Das bleibt in der Nähe von 0 beschränkt.

p=3: Dann ist [mm] Q(h)=8+\bruch{4}{h}. [/mm] Bäääh ! Q(h) [mm] \to \infty [/mm] für  $ h [mm] \searrow [/mm] 0 $

p=4: Dann ist [mm] Q(h)=\bruch{8}{h}+\bruch{4}{h^2}. [/mm] Wieder bäääh ! Q(h) [mm] \to \infty [/mm] für  $ h [mm] \searrow [/mm] 0 $

.
.
.
.
.
.
.

Was ist also das größtmögliche p, so das  $ f(h) = [mm] O(h^p) [/mm] $, für $ h [mm] \searrow [/mm] 0 $  gilt ?

FRED


>  
> Vielen Dank
>  
> EDIT: Schreibfehler entfernt
>  


Bezug
                
Bezug
Landau-Symbole: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:10 Di 23.07.2013
Autor: algieba

Aufgabe
Man schreibe die folgenden Ausdrücke in der Form [mm]f(h) = O(h^p)[/mm], für [mm]h \searrow 0[/mm] mit möglichst großem [mm]p \in \IN[/mm], bzw. [mm]g(n) = O(n^q)[/mm] für [mm]n \nearrow \infty[/mm] mit möglichst kleinem [mm]q\in\IN[/mm]:

a) [mm]f(h) = 4(h^2+h)^2-4h^4[/mm]

b) [mm]g(n) = 4(n^2+n)^2-4n^4[/mm]

c) [mm]f(h) = \bruch{e^h-e^{-h}}{2h}-1[/mm]

d) $g(n) = [mm] \sup_{x>0} \bruch{1-e^{-nx}}{1-e^{-x}}$ [/mm]

Hallo

> Was ist also das größtmögliche p, so das  [mm]f(h) = O(h^p) [/mm],
> für [mm]h \searrow 0[/mm]  gilt ?

Das ist dann natürlich $p=2$. Also gilt $f(h) = [mm] O(n^2) [/mm]

Ich habe oben noch einmal die anderen Aufgaben geschrieben. Die Aufgabe a haben wir gerade gelöst.
Bei b) habe ich raus: $g(n) = [mm] O(n^3)$ [/mm]
Bei c) habe ich raus: $f(h) = O(h)$
Sollte eigentlich stimmen.

Jetzt hänge ich aber bei der Aufgabe d):
Ich habe mir überlegt, dass es eigentlich problemlos möglich sein müsste das Polynom [mm] $n^q$ [/mm] in das Supremum reinzuziehen. In Formeln:

$Q(n) = [mm] \bruch{\sup_{x>0} \bruch{1-e^{-nx}}{1-e^{-x}}}{n^q} [/mm]  =  [mm] \sup_{x>0} \bruch{1-e^{-nx}}{n^q(1-e^{-x})}$ [/mm]

Ist das schon mal richtig? Und wie komme ich dann weiter?

Vielen Dank für die Hilfe

Bezug
                        
Bezug
Landau-Symbole: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:58 Mi 31.07.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]