matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInterpolation und ApproximationLagrange
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Interpolation und Approximation" - Lagrange
Lagrange < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagrange: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:27 Fr 06.01.2012
Autor: alpha02

Aufgabe
Für [mm] n\ge [/mm] 1 berechne [mm] l_k[x_0 [/mm] ... [mm] x_n] [/mm] und [mm] \summe_{k=0}^{n}l_k[x_0 [/mm] ... [mm] x_n], [/mm] wobei die [mm] x_i [/mm] paarweise verschiedene reelle Zahlen sind und die [mm] l_k(x) [/mm] für k=0, ..., n die Lagrangeschen Basispolynome.

Hallo,

die erste Aufgabe habe ich gelöst: [mm] l_k[x_0 [/mm] ... [mm] x_n]=\produkt_{i=0,i\not=k}^{n}\bruch{1}{x_k-x_i} [/mm]
Bei der zweiten Aufgabe weiß ich nicht so ganz, wie ich am besten anfangen könnte.  Für n=1 erhält man [mm] \bruch{1}{x_0-x_1}-\bruch{1}{x_0-x_1}=0, [/mm] wenn man die Formel aus dem ersten Aufgabenteil verwendet.

Danke!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lagrange: Antwort
Status: (Antwort) fertig Status 
Datum: 15:39 Mo 09.01.2012
Autor: meili

Hallo alpha,

> Für [mm]n\ge[/mm] 1 berechne [mm]l_k[x_0[/mm] ... [mm]x_n][/mm] und
> [mm]\summe_{k=0}^{n}l_k[x_0[/mm] ... [mm]x_n],[/mm] wobei die [mm]x_i[/mm] paarweise
> verschiedene reelle Zahlen sind und die [mm]l_k(x)[/mm] für k=0,
> ..., n die Lagrangeschen Basispolynome.
>  Hallo,
>
> die erste Aufgabe habe ich gelöst: [mm]l_k[x_0[/mm] ...
> [mm]x_n]=\produkt_{i=0,i\not=k}^{n}\bruch{1}{x_k-x_i}[/mm]
>  Bei der zweiten Aufgabe weiß ich nicht so ganz, wie ich
> am besten anfangen könnte.  Für n=1 erhält man
> [mm]\bruch{1}{x_0-x_1}-\bruch{1}{x_0-x_1}=0,[/mm] wenn man die
> Formel aus dem ersten Aufgabenteil verwendet.

[ok]
Vorausgesetzt der 1. Teil stimmt (was ich nicht überprüft habe),
so ist das für n=1 richtig.

Für n > 1 wird es zwar komplizierter aussehen, aber dasselbe Ergebnis sein.

Warum?

>  
> Danke!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß
meili

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]