matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenLR Zerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - LR Zerlegung
LR Zerlegung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LR Zerlegung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:45 Di 21.05.2013
Autor: Kaffetrinken

Aufgabe
Zu losen sei das lineare Gleichungssystem Ax = b mit
A =  |R*  |v |
     |- - - -|
     | [mm] u^{T} [/mm] | 0|
R* eine invertierbare obere Dreiecksmatrix ist, u,v [mm] \varepsilon \IR^{n-1} [/mm]

Geben Sie die LR-Zerlegung von A an


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo zusammen. Ich komm bei dieser Aufgabe nicht weiter. Da man die LR Zerlegung angeben soll und bei einer späteren Aufgabe damit auch noch etwas zeigen soll, bin ich mir sicher das man die LR Zerlegung mit einem relativ einfachen Ausdruck beschrieben kann, also entweder mit einem Kniff oder mit der normalen Zerlegung bei der sich dann aber viel rauskürzt.
Da ich auf keinen Kniff gekommen bin hab ich das mal mit der normalen Technik angegangen, also L1 bestimmt:

[mm] \pmat{ 1 & & & &\\ l_{21} & 1 & & & \\ .. & & 1 & & \\ ..& & & 1 & \\ l_{n1} & & & & 1} [/mm]

mit [mm] l_{x1} [/mm] = 0 für x [mm] \not= [/mm] n und [mm] l_{n1} [/mm] = [mm] \bruch{u_{1}}{a_{11}} [/mm]

und somit auf ein R1 das gleich A ist, bis auf die letzte Zeile (ich nenne sie [mm] u^{(2)}), [/mm] wo [mm] u^{(2)}_{1} [/mm] = 0 und [mm] u^{(2)}_{x} [/mm] = [mm] u_{x} [/mm] - [mm] \bruch{u_{1}}{a_{11}} [/mm] * [mm] a_{1x} [/mm]

Leider finde ich nicht zum kürzen oder sonstwie verkleinern, was dazu führt das ich bei [mm] R_{2} [/mm] als [mm] u^{(3)} [/mm] dortstehen hab:

[mm] u_{x}^{(3)} [/mm] = [mm] u_{x}^{(2)} [/mm] - [mm] \bruch{u_{2}^{(2)}}{a_{22}} [/mm] * [mm] a_{2x} [/mm] = [mm] (u_{x} [/mm] - [mm] \bruch{u_{1}}{a_{11}} [/mm] * [mm] a_{1x}) [/mm] - [mm] \bruch{u_{2} - \bruch{u_{1}}{a_{11}} * a_{12}}{a_{22}} [/mm] * [mm] a_{2x} [/mm]

Von einer generellen Aussage für [mm] u^{(n)} [/mm] bin ich also weit entfernt, aber genau das bräuchte ich doch wenn ich die LR Zerlegung für so einen allgemeinen Fall angeben soll.

Wäre für jede Hilfe dankbar.

        
Bezug
LR Zerlegung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Do 23.05.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]