matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKurze Grenzwertfrage (Sinus)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Kurze Grenzwertfrage (Sinus)
Kurze Grenzwertfrage (Sinus) < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurze Grenzwertfrage (Sinus): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:05 Mi 04.10.2006
Autor: DrRobotnik

Hallo,

ich habe eine kurze Frage zu folgender Reihe:

[mm]\summe_{k=0}^{\infty} \left (\bruch{i + 1}{2} \right)^k \cdot sin(k)[/mm]

Dass [mm]\summe_{k=0}^{\infty} \left (\bruch{i + 1}{2} \right)^k[/mm] den Grenzwert [mm]1 + i[/mm] hat, weiß ich. Aber mit [mm]\summe_{k=0}^{\infty} sin(k)[/mm] kann ich nichts anfangen. Sinus ist ja nicht konvergent, sondern bewegt sich periodisch zwischen -1 und 1. Welchen Einfluss hat der Sinus auf den Grenzwert der Reihe?

:-/

VG


        
Bezug
Kurze Grenzwertfrage (Sinus): Antwort
Status: (Antwort) fertig Status 
Datum: 22:36 Fr 06.10.2006
Autor: chrisno


> Hallo,
>  
> ich habe eine kurze Frage zu folgender Reihe:
>  
> [mm]\summe_{k=0}^{\infty} \left (\bruch{i + 1}{2} \right)^k \cdot sin(k)[/mm]
>  
> Dass [mm]\summe_{k=0}^{\infty} \left (\bruch{i + 1}{2} \right)^k[/mm]
> den Grenzwert [mm]1 + i[/mm] hat, weiß ich. Aber mit
> [mm]\summe_{k=0}^{\infty} sin(k)[/mm] kann ich nichts anfangen.

Das brauchst Du ja auch nicht. Du kannst die Summe ja nicht so zerlegen.

> Sinus ist ja nicht konvergent, sondern bewegt sich
> periodisch zwischen -1 und 1. Welchen Einfluss hat der
> Sinus auf den Grenzwert der Reihe?

Genau diese Beschränktheit des Sinus hilft Dir weiter. Damit kannst Du zumindest schon mal die Konvergenz der Reihe beweisen. Aus
[mm]\summe_{k=0}^{\infty} \left (\bruch{i + 1}{2} \right)^k[/mm] ist jedes Glied größer (oder gleich) als in
[mm]\summe_{k=0}^{\infty} \left (\bruch{i + 1}{2} \right)^k \cdot | sin(k)|[/mm] Wenn die Betragsfolge konvergiert, dann die alternierende erst recht.
(So genau erinnere ich mich nach 20 Jahren nicht mehr an die einzelnen Sätze)
Falls Du den Grenzwert brauchst, dann hast Du noch ein Problem.

>  
> :-/
>  
> VG
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]