matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenKurvenintegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Kurvenintegral
Kurvenintegral < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:33 Fr 19.03.2010
Autor: moritz.andert

Aufgabe
Wir betrachten die Kurve K von (0, 0, [mm] 0)^{T} [/mm] nach (2, 0, [mm] 1)^{T} [/mm] ,
die sich aus dem Weg [mm] X_{1}(t) [/mm] := [mm] (2t^{2} [/mm] − t, [mm] t^{2}, t)^{T} [/mm] mit t ∈ [0, 1] und dem Geradenstück von
(1, 1, [mm] 1)^{T} [/mm] nach (2, 0, [mm] 1)^{T} [/mm] zusammensetzt. Berechnen Sie das Kurvenintegral
[mm] \integral_{W}^{}F [/mm] · dX für
das Vektorfeld
F(x, y, z) := (2x + yz, [mm] y^{2} [/mm] − [mm] z^{4}, xz^{2})^{T} [/mm] .

Hallo,

bei dieser Aufgabe habe ich bereits das Kurvenintegral mit [mm] X_{1} [/mm] berechnet. Nun brauche ich aber noch ein [mm] X_{2} [/mm] für das Geradenstück von [mm] (1,1,1)^{T} [/mm] nach [mm] (2,0,1)^{T}. [/mm]

Ich vermute mal, dass es eine Kleinigkeit bin aber leider heute nicht drauf gekommen.

[mm] X_{2} = [/mm] (2t,0,t) habe ich leider ein falsches Ergebnis.

Vielen Dank für die Mühe
Moritz

        
Bezug
Kurvenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 17:38 Fr 19.03.2010
Autor: metalschulze

Hallo,
ich habe [mm] X_{2}=(2t, [/mm] t, [mm] t)^T [/mm] erhalten..
Gruss Christian

Bezug
                
Bezug
Kurvenintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:08 Sa 20.03.2010
Autor: moritz.andert

Hallo,

vielen Dank für die Antwort, aber wie kommst du darauf?

Viele Grüße

Bezug
                        
Bezug
Kurvenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 10:32 Sa 20.03.2010
Autor: gfm

Entweder konvex linear mitteln [mm] (t\in[0,1]) [/mm]

[mm] \overrightarrow{v(t)}=t\overrightarrow{v_1}+(1-t)\overrightarrow{v_0} [/mm]

oder Geradengleichung mit Richtungsvektor

[mm] \overrightarrow{\Delta v}=\overrightarrow{v_1}-\overrightarrow{v_0} [/mm]

und [mm] \overrightarrow{v_0} [/mm] als Anfangsvektor:

[mm] \overrightarrow{v(t)}=\overrightarrow{\Delta v}t+\overrightarrow{v_0} [/mm]



Bezug
                                
Bezug
Kurvenintegral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:08 Sa 20.03.2010
Autor: moritz.andert

Vielen Dank für die schnelle Antwort, jetzt habe ich es verstanden.

Viele Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]