matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungKugelgleichung bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra / Vektorrechnung" - Kugelgleichung bestimmen
Kugelgleichung bestimmen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kugelgleichung bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:08 Fr 11.01.2008
Autor: Maggi87

Aufgabe
geg: E1: [mm] \vektor{2 \\ 1 \\ 2} [/mm] * [mm] \overline{x} [/mm] - 33 = 0
     g : [mm] \overline{x} [/mm] = [mm] \vektor{2 \\ 5 \\ 4}+ k\vektor{1 \\ -2 \\ -1} k\in\IR [/mm]

Bestimmen sie die Gleichung der Kugel K mit dem Radius r = 6LE,deren Mittelpunkt M auf g liegt und die die Ebene E1 als Tangentialebene hat! Mittelpunkt M und Koordinatenursprung O (0|0|0) liegen in derselben Halbebene.

Ich habe leider keinerlei Idee wie ich daran gehen soll und hoffe das ihr mir evtl. weiterhelfen könnt.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Kugelgleichung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:39 Fr 11.01.2008
Autor: Somebody


> geg: E1: [mm]\vektor{2 \\ 1 \\ 2}[/mm] * [mm]\overline{x}[/mm] - 33 = 0
>       g : [mm]\overline{x}[/mm] = [mm]\vektor{2 \\ 5 \\ 4}+ k\vektor{1 \\ -2 \\ -1} k\in\IR[/mm]
>  
> Bestimmen sie die Gleichung der Kugel K mit dem Radius r =
> 6LE,deren Mittelpunkt M auf g liegt und die die Ebene E1
> als Tangentialebene hat! Mittelpunkt M und
> Koordinatenursprung O (0|0|0) liegen in derselben
> Halbebene.
>  Ich habe leider keinerlei Idee wie ich daran gehen soll
> und hoffe das ihr mir evtl. weiterhelfen könnt.

Eine Kugelgleichung hat die Form

[mm](x-m_1)^2+(y-m_2)^2+(z-m_3)^2=r^2[/mm]


$r$ kennen wir. Wir müssen somit nur noch den Kugelmittelpunkt [mm] $M(m_1|m_2|m_3)$ [/mm] bestimmen.

$M$ muss auf $g$ liegen und von [mm] $E_1$ [/mm] den Abstand $r$ haben. Die Abstandsbedingung kannst Du mit Hilfe der Hesseschen Normalform als Betragsgleichung ins Spiel bringen. In diese Betragsgleichung kannst Du dann die Koordinaten von $M$, ausgedrückt mit Hilfe der rechten Seite der Geradengleichung von $g$, als Gleichung für den Parameterwert $k$ für $M$ umschreiben. Hast Du $k$ aus dieser Gleichung bestimmt, setzt Du den Wert von $k$ in die Geradengleichung von $g$ ein und erhältst die Koordinaten von $M$. Damit hast Du die Kugelgleichung vollständig bestimmt.


Bezug
                
Bezug
Kugelgleichung bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:53 Fr 11.01.2008
Autor: Maggi87

Vielen Dank ich werd dies gleich mal probieren

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]