matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikKovarianz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stochastik" - Kovarianz
Kovarianz < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kovarianz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:00 Di 12.04.2016
Autor: Mathics

Aufgabe
Die Aktien A und B haben die folgenden Renditen für die Jahre 2010 - 2013:

A: -12% ; -3% ; 9,5%; 12%

B: 3,5% ; -5% ; 5% ; 10%

Erwartungswerte: E(A) = 1,63% und E(B) = 3,38%

Standardabweichung: s(A) = 11,21% ; s(B) = 6,24%

Berechnen Sie die Kovarianz und den Korrelationskoeffizienten von den beiden Aktien.

Hallo,

ich kenne für die Kovarianz die folgende Formel:

cov. = E(XY) - E(X)*E(Y)

Wenn ich es anwende erhalte ich:

cov. = [mm] \bruch{-12*3,5 + 3*5 + 9,5*5 + 12*10}{4} [/mm] - 1,63*3,38 = 29,62


Als Lösung ist aber cov. = 0,003952 angegeben.

Was mache ich aber falsch?


LG
Mathics

        
Bezug
Kovarianz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:10 Di 12.04.2016
Autor: luis52


> Als Lösung ist aber cov. = 0,003952 angegeben.
>  
> Was mache ich aber falsch?
>

Zwei Dinge

1) Es wird anscheinend mit 0.12 statt 12% usw gerechnet.
2) Die Kovarianz kann auch durch [mm] $\sum_{i=1}^n(x_i-\bar x)(y_i-\bar [/mm] y)/(n-1)$ definiert sein. Damit ergibt sich der Loesungswert.



Bezug
                
Bezug
Kovarianz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:17 Di 12.04.2016
Autor: Mathics


>  2) Die Kovarianz kann auch durch [mm]\sum_{i=1}^n(x_i-\bar x)(y_i-\bar y)/(n-1)[/mm]
> definiert sein. Damit ergibt sich der Loesungswert.


Ist dann die Formel, die ich verwendet habe, falsch?


LG
Mathics


Bezug
                        
Bezug
Kovarianz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:50 Di 12.04.2016
Autor: luis52


> Ist dann die Formel, die ich verwendet habe, falsch?
>
>

Nicht falsch, nur anders. Klaere das mit deinem Pruefer, ob er lieber
[mm] $\sum_{i=1}^n(x_i-\bar x)(y_i-\bar [/mm] y)/n $ oder $ [mm] \sum_{i=1}^n(x_i-\bar x)(y_i-\bar [/mm] y)/(n-1) $ sieht. Du hast nach der ersten gerechnet bis auf die o.g. Datentransformation. Beide sind gaengig.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]