matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenKonvexe Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Konvexe Funktion
Konvexe Funktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvexe Funktion: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 22:14 Do 04.03.2010
Autor: peeetaaa

Aufgabe
Zeigen Sie, dass f eine konvexe Funktion ist
[mm] f:\IR \to \IR [/mm] mit f(x)= [mm] ln(1+e^x) -\bruch{1}{2}x [/mm]

Hallo,

komm bei der Aufgabe nicht weiter!
Wollte das zeigen, indem ich gucke ob die Funktion 2 mal differenzierbar ist und dann wenn f''(x) [mm] \ge [/mm] 0

f(x)= [mm] ln(1+e^x) -\bruch{1}{2}x [/mm]
f'(x)= [mm] \bruch{1}{1+exp(x)} [/mm] - [mm] \bruch{1}{2} [/mm]
f''(x)= [mm] \bruch{-exp(x)}{(1+exp(x))^2} [/mm]

aber das würde doch heißen, dass f''(x)<0 und somit nicht konvex ist...

Gruß,
peeetaaa

        
Bezug
Konvexe Funktion: Korrektur
Status: (Antwort) fertig Status 
Datum: 22:16 Do 04.03.2010
Autor: Loddar

Hallo peeetaaa!


Deine 1. Ableitung ist falsch, da Du die innere Ableitung des ersten Terms vergessen hast.


Gruß
Loddar


Bezug
                
Bezug
Konvexe Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:44 Do 04.03.2010
Autor: peeetaaa

ach cool danke! habs verbessert!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]