matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraKörper
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Körper
Körper < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körper: Aufgabe
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 09:31 Mo 08.11.2004
Autor: Wanja

Es sei K ein Körper, 0 die Null und 1 die Eins von K.
Im Allgemeinen ist die Menge [mm] \IN \circ= \{0,1,2,...\} [/mm] nicht in K enthalten! Es wird zu jedem [mm] n\in\IN \circ [/mm] für jedes [mm] a\in [/mm] K das natürliche Vielfache [mm] n\times [/mm] a, das n-fache von a, definiert:
0 [mm] \times [/mm] a:=0
n [mm] \times [/mm] a:=((n-1) [mm] \times [/mm] a) [mm] \pm [/mm] a  für n=1,2,3,...

Man beweise:
a)Ist [mm] a\in [/mm] K und [mm] n\in\IN \circ [/mm] , so ist [mm] -(n\times a)=n\times(-a) [/mm]
b)Sind [mm] a,b\in [/mm] K  und ist n [mm] \in\IN \circ, [/mm] so ist [mm] n\times(a\pm b)=(n\times a)\pm(n\times [/mm] b)
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Körper: zu leicht oder zu schwer?
Status: (Frage) beantwortet Status 
Datum: 18:13 Di 09.11.2004
Autor: Wanja

Ist die Aufgabe zu leicht oder zu schwer????? Mein Problem ist eigentlich  nur, dass ich nicht weiß wie ich mit diesem Zeichen [mm] "\times" [/mm] umgehen kann bzw. darf und deswegen komm ich nicht dorthin wo ich hin will. Darf ich es wie ein "mal" benutzen? Welche Operationen sind damit erlaubt??

Bezug
                
Bezug
Körper: Induktion!
Status: (Antwort) fertig Status 
Datum: 11:16 Mi 10.11.2004
Autor: Gnometech

Hallo Wanja!

Das [mm] $\times$ [/mm] ist sehr suggestiv - die Definition ist ja

$n [mm] \times [/mm] a = [mm] \underbrace{a + \ldots + a}_{n \mbox{ mal}}$ [/mm]

Man kann dies natürlich schön rekursiv definieren.

Und diese rekursive Definition kannst Du Dir zunutze machen! Beweise per Induktion nach $n$:

Zu zeigen: $-(n [mm] \times [/mm] a) = n [mm] \times [/mm] (-a)$

Induktion nach $n$. Für $n = 0$ gilt:

$- (0 [mm] \times [/mm] a) = - 0 = 0 [mm] \times [/mm] (-a)$.

Paßt also. :-)

Sei $n > 0$ und die Aussage also für alle $k < n$ gezeigt. Dann gilt:

$- (n [mm] \times [/mm] a) = - ((n - 1) [mm] \times [/mm] a) + a) = (- (n-1) [mm] \times [/mm] a) + (-a) = (n-1) [mm] \times [/mm] (-a) + (-a) = n [mm] \times [/mm] (-a)$

Wo genau die Induktionsvoraussetzung eingeht, überlasse ich Dir, ebenso wie die Aufgabe b). :-)

Viel Erfolg!

Lars

Bezug
                        
Bezug
Körper: Dankeschön!!!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:44 Mi 10.11.2004
Autor: Wanja

Ich bin sehr froh, dass mir noch jemand geantwortet hat. Danke!!! Ich hatte die Hoffnung schon fast aufgegeben.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]