matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenKern einer Matrixabbildung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Kern einer Matrixabbildung
Kern einer Matrixabbildung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kern einer Matrixabbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:28 So 22.11.2009
Autor: Aoide

Aufgabe
Gegeben: T = [mm] \IR^3,4 \to \IR^1,3 [/mm]     und M [mm] \mapsto\vmat{0&0&0&1}M [/mm]

A) Gesucht ist eine von der Nullmatrix verschiedene Matrix [mm] A\in\IR^{3,4}, [/mm] sodass A [mm] \in [/mm] Kern(T)

B) Gesucht ist eine Matrix [mm] B\in \IR^{3,4}, [/mm] sodass [mm] B\not\in [/mm] Kern(T).

Ich habe keine Idee, wie ich diese Aufgabe angehen soll :(
Kern bedeutet doch, dass die Abbildung multipliziert mit einem Vektor den Nullvektor ergibt?
Aber wie multipliziere ich den eine 1x3Matrix mit einer 4x3Matrix? Das ist doch normalerweise gar nicht möglich. Ich meine leider aber auch in meinem Skript nichts dazu zu finden oder vielleicht bringe ich es nicht richtig in Zusammenhang.
Wäre dankbar über etwas Hilfe!

        
Bezug
Kern einer Matrixabbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:35 So 22.11.2009
Autor: steppenhahn

Hallo Aoide,

> Gegeben: T = [mm]\IR^3,4 \to \IR^1,3[/mm]     und M
> [mm]\mapsto\vmat{0&0&0&1}M[/mm]
>  
> A) Gesucht ist eine von der Nullmatrix verschiedene Matrix
> [mm]A\in\IR^{3,4},[/mm] sodass A [mm]\in[/mm] Kern(T)
>  
> B) Gesucht ist eine Matrix [mm]B\in \IR^{3,4},[/mm] sodass [mm]B\not\in[/mm]
> Kern(T).
>  Ich habe keine Idee, wie ich diese Aufgabe angehen soll
> :(
>  Kern bedeutet doch, dass die Abbildung multipliziert mit
> einem Vektor den Nullvektor ergibt?
>  Aber wie multipliziere ich den eine 1x3Matrix mit einer
> 4x3Matrix? Das ist doch normalerweise gar nicht möglich.

Du musst keine 1x3-Matrix mit einer 4x3-Matrix multiplizieren...
Du liegst erstmal richtig mit deiner Aussage: Ja, wir müssen eine Matrix A finden, für die gilt: T(A) = Nullvektor.

Aber T(A) bedeutet hier ja gerade

[mm] \vmat{0&0&0&1}*A, [/mm]

also suchen wir eine Matrix A ungleich der Nullmatrix sodass

[mm] \vmat{0&0&0&1}*A [/mm] = Nullvektor.

Und das ist doch nun wirklich nicht so schwer. Schreib dir doch mal eine beliebige Matrix A, zum Beispiel

$A = [mm] \pmat{1 & 1 & 1\\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1}$ [/mm]

und führe für die einfachmal die Abbildung aus. Dann erkennst du vielleicht schon, welche Komponenten in der Matrix Null sein sollten.

Grüße,
Stefan

Bezug
                
Bezug
Kern einer Matrixabbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:56 So 22.11.2009
Autor: Aoide

Mmh, also wäre eine mögliche Matrix z.B. [mm] \vmat{1&1&1\\1&1&1\\1&1&1\\0&0&0} [/mm] ??

Ich glaube, ich denke mir die Aufgabe gerade komplizierter als sie ist, kann das sein??

Danke dir schonmal für die Hilfe!

Bezug
                        
Bezug
Kern einer Matrixabbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 So 22.11.2009
Autor: steppenhahn

Hallo!

> Mmh, also wäre eine mögliche Matrix z.B.
> [mm]\vmat{1&1&1\\1&1&1\\1&1&1\\0&0&0}[/mm] ??

[ok] Ja, genau, das ist eine Matrix, die offenbar durch die Abbildung T zu 0 wird, aber nicht die Nullmatrix ist. Aufgabe erfüllt.

> Ich glaube, ich denke mir die Aufgabe gerade komplizierter
> als sie ist, kann das sein??

Das könnte sein :-)

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]