matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieIntegration über Maß / Borel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integrationstheorie" - Integration über Maß / Borel
Integration über Maß / Borel < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration über Maß / Borel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:43 Mi 29.01.2014
Autor: EvelynSnowley2311

Aufgabe
Berechnen Sie

[mm] \integral_{\IR}{(x-2) d \nu (x)} [/mm]   für das maß [mm] \nu [/mm] auf [mm] \mathcal{B}^1 [/mm] mit [mm] \nu(A) [/mm] = 2, falls 7 [mm] \in [/mm] A und [mm] \nu(A) [/mm] = 0 sonst.

Huhu zusammen!

Ich habe mir gedacht, dass Integral so auseinander zu ziehen:

[mm] \integral_{\IR \backslash 7}{(x-2) d \nu (x)} [/mm]  + [mm] \integral_{7}{(x-2) d \nu (x)} [/mm]

Nun weiß ich nicht, ob man das Maß als x einsetzten müsste, ich würde einfach multiplizieren und schon als Endergebnis

2(x-2) stehen lassen, was meint ihr?
Es gäbe natürlich die Methode, [mm] \IR [/mm] als überabzählbare Vereinigung halboffener Intervalle zu schreiben, aber dann wäre das Integral über dem Intervall nicht eindeutig ( Da man ja 7 [mm] \in [/mm] (- [mm] \infty, [/mm] 7 ] als auch [mm] \in [/mm] (6,8] sehen könnte. und die Integralgrenzen nicht fest wären)

Hoffe ihr könnt mir da weiterhelfen!

Lieben Gruß,

Eve




        
Bezug
Integration über Maß / Borel: Antwort
Status: (Antwort) fertig Status 
Datum: 06:47 Do 30.01.2014
Autor: fred97

Wir setzen $A: [mm] =\{7\}$ [/mm]  und $B:= [mm] \IR \setminus [/mm] A.$ Weiter sei $f(x):=x-2$


Dann ist



[mm] $\integral_{\IR}{f(x) d \nu (x)} [/mm] = [mm] \integral_{A}{f(x) d \nu (x)} +\integral_{B}{f(x) d \nu (x)} [/mm] $

Wegen f(7)=5 ist  [mm] \integral_{A}{f(x) d \nu (x)}=5* \nu(A)=10. [/mm]

Nun zeige Du: [mm] \integral_{B}{f(x) d \nu (x)}=0. [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]