matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegral mit Stokes lösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Integral mit Stokes lösen
Integral mit Stokes lösen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral mit Stokes lösen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:59 So 29.10.2006
Autor: nullblick

Aufgabe
[mm] \partial [/mm] G={ x,y,z | x = cos t, y = sin t, z = cos t; 0 [mm] \le [/mm] t [mm] \le 2\pi} [/mm] Löse das Integral mit dem Satz von Stokes.
[mm] \integral_{\partial G}^{}{yz^2 dx + (xz^2-2y) dy + 2xyz dz} [/mm]

Kann mir mitte jemand helfen? Den Satz von Stokes kenn ich weiß aber nicht wie ich das jetzt genau anwende. [mm] \integral_{}^{}\integral_{G}^{}{rot (F) dG} [/mm] = [mm] \integral_{\partial G}^{}{F ds} [/mm]

für die rotation komme ich auf [mm] \pmat{ 2x(z-2y) \\ 2y(y-z) \\ 0 } [/mm] , keine Ahnung wie ich den Normalvektor ausrechne und keine Ahnung welche Grenzen ?????

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integral mit Stokes lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:54 Mo 30.10.2006
Autor: Leopold_Gast

Beachte, daß für [mm]F = F(x,y,z) = xyz^2 - y^2[/mm] gerade [mm]\mathrm{d}F = yz^2 \, \mathrm{d}x \ + \ \left( xz^2 - 2y \right) \, \mathrm{d}y \ + \ 2xyz \, \mathrm{d}z[/mm] gilt.

Die Bezeichnung [mm]\partial{G}[/mm] finde ich etwas merkwürdig. Welches Gebiet soll denn diese Kurve im [mm]\mathbb{R}^3[/mm] beranden? Wäre es nicht sinnvoller, die Kurve selbst z.B. [mm]K[/mm] zu nennen. Dann gilt nach Stokes

[mm]\int_{K}~\mathrm{d}F = \int_{\partial{K}}~F[/mm]

Der Ausdruck rechts ist definiert als [mm]F(\text{Endpunkt}) - F(\text{Anfangspunkt})[/mm]. Und da die Kurve geschlossen ist, ist der Integralwert somit 0.



Bezug
                
Bezug
Integral mit Stokes lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:52 Mo 30.10.2006
Autor: nullblick

Auf 0 hätte ich auch selber kommen können hmmm... hätte es mir überlegen müssen nachdem die grenzen von t zwischen 0 und [mm] 2\pi [/mm] sind.

Aber mich würde es noch interessieren wie das ganze aussehen würde wenn die grenzen jetzt  zb. zwischen 0 und [mm] \pi/2 [/mm] liegen würden?

Bezug
                        
Bezug
Integral mit Stokes lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 Mo 30.10.2006
Autor: Leopold_Gast

[mm]\text{Anfangspunkt} = (1,0,1)[/mm] (für [mm]t=0[/mm])
[mm]\text{Endpunkt} = (0,1,0)[/mm] (für [mm]t = \frac{\pi}{2}[/mm])

Daher gilt

[mm]\int_{K}~\mathrm{d}F \ = \int_{\partial{K}}~F \ = \ F(0,1,0) - F(1,0,1) = -1 - 0 = -1[/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]