Inklusionserhaltende Bijektion < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:50 Mo 19.05.2008 | Autor: | Maja83 |
Aufgabe | Für einen kommutativen Ring R bezeichnen wir mit Ideale [mm] (R):=\{I \subseteq R | Ideale in R\} [/mm] die Menge der Ideale in R. Es seien R und S kommutative Ringe und es sei [mm] \phi [/mm] : R [mm] \to [/mm] S ein Ringhomomorphismus. Zeigen Sie, dass [mm] \phi [/mm] eine inklusionserhaltende Bijektion [mm] \psi: \{I \in Ideale (R) | Ke(\phi) \subseteq I \} \to [/mm] Ideale [mm] (Bi(\phi)), [/mm] I [mm] \mapsto \phi(I) [/mm] induziert. |
Soweit die Aufgabe... und 10000 ???? in meinem Gesicht. Ich habe keine Ahnung, was ich tun soll.. Allerdings muss ich die Wohldefiniertheit von [mm] \psi [/mm] zeigen, das weiß ich. Aber wie muss ich bei all dem vorgehen?
Danke euch,
Maja
|
|
|
|
Hallo!
Zunächst einmal... sind Dir alle Definitionen klar? Weißt Du, was ein Ideal ist?
Gezeigt werden soll in Worten doch folgendes: Wenn [mm] $\phi$ [/mm] ein Homomorphismus von Ringen ist [mm] ($\phi: [/mm] R [mm] \to [/mm] S$), dann gibt es eine 1-zu-1 Beziehung (Bijektion) zwischen den Idealen von $R$, die den Kern von [mm] $\phi$ [/mm] enthalten und den Idealen im Bild von [mm] $\phi$. [/mm] (Letzteres ist Unterring von $S$)
Das ist auf den ersten Blick schon ein überraschendes Ergebnis, da über das [mm] $\phi$ [/mm] nciht vorausgesetzt wird, dass es eine Bijektion oder so ist.
Also, fangen wir mal an... sei $I [mm] \subseteq [/mm] R$ ein Ideal, welches den Kern von [mm] $\phi$ [/mm] enthält. Wir müssen dieses jetzt in eine sinnvolle Beziehung mit einem Ideal im Bild von [mm] $\phi$ [/mm] setzen.
Betrachten wir dazu mal die Menge $J := [mm] \phi(I) [/mm] = [mm] \{ s \in S : s = \phi(r) \mbox{ für ein } r \in I \}$.
[/mm]
Versuch doch mal, folgendes zu zeigen:
- $J$ so wie es oben definiert ist, ist ein Ideal im Bild von [mm] $\phi$.
[/mm]
- Ist umgekehrt ein Ideal $J'$ im Bild von [mm] $\phi$ [/mm] gegeben, dann gibt es ein Ideal $I'$ in $R$, welches den Kern von [mm] $\phi$ [/mm] enthält und das auf $J'$ abgebildet wird. (Möglicher Ansatz: $I' := [mm] \phi^{-1}(J')$)
[/mm]
- Diese Beziehung liefert eine Bijektion, wenn also der Vorgang zwei Mal durchgeführt wird, ist man wieder am Ausgangspunkt angekommen.
- Die Inklusionen bleiben erhalten, wenn also [mm] $I_1 \subseteq I_2$ [/mm] Ideale in $R$ sind, die den Kern von [mm] $\phi$ [/mm] enthalten, dann sind ihre Bilder auch entsprechend ineinander enthalten.
Das ist alles nicht so schwer, im Wesentlichen muss man nur Definitionen nachrechnen und alles steht da.
Viel Erfolg!
Lars
|
|
|
|