matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenGrenzwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Ganzrationale Funktionen" - Grenzwert
Grenzwert < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Fehler aufzeigen
Status: (Frage) beantwortet Status 
Datum: 13:57 Do 19.07.2012
Autor: Windbeutel

Aufgabe
Zeige den Grenzwert mit Hilfe der x [mm] \to x_{0} [/mm] Methode an der Stelle [mm] x_{-1} [/mm]

[mm] h:x\to -x^3-x4-2 [/mm]

Hallo,
offensichtlich sind Grenzwerte nicht mein Ding, mit dieser Aufgabe komme ich einfach nicht weiter.
Das Ergebnis müsste doch wohl -2x-4 sein.

Aber ich schaffe es einfach nicht mit der vorgegebenen Methode dahin zu kommen.

[mm] \bruch{-x^2-4x-2-( -(-1)^2-4(-1)-2)}{x-(-1)} [/mm]

[mm] \bruch{-x^2-4x-2-(1)}{x+1} [/mm]

Auf diese Polynomdivision komme ich immer wieder, aber da kommt dann -x-3 heraus.

Würde mich freuen, wenn mir jemand meinen fehler aufzeigen könnte.
Danke im Voraus



        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 14:09 Do 19.07.2012
Autor: fred97


> Zeige den Grenzwert mit Hilfe der x [mm]\to x_{0}[/mm] Methode an
> der Stelle [mm]x_{-1}[/mm]

Ich nehme an, es soll [mm] x_0=-1 [/mm] lauten

>  
> [mm]h:x\to -x^3-x4-2[/mm]


Die Funktion h lautet wohl so: [mm] h(x)=-x^2-4x-2. [/mm] Das entnehme ich jedenfalls Deinen Ausführungen unten.

Weiter entnehme ich diesen Ausführungen, dass Du h'(-1) bestimmen sollst.




>  Hallo,
>  offensichtlich sind Grenzwerte nicht mein Ding, mit dieser
> Aufgabe komme ich einfach nicht weiter.
>  Das Ergebnis müsste doch wohl -2x-4 sein.
>  
> Aber ich schaffe es einfach nicht mit der vorgegebenen
> Methode dahin zu kommen.
>  
> [mm]\bruch{-x^2-4x-2-( -(-1)^2-4(-1)-2)}{x-(-1)}[/mm]
>  
> [mm]\bruch{-x^2-4x-2-(1)}{x+1}[/mm]
>  
> Auf diese Polynomdivision komme ich immer wieder, aber da
> kommt dann -x-3 heraus.
>  
> Würde mich freuen, wenn mir jemand meinen fehler aufzeigen
> könnte.


Du hast keine Fehler gemacht !

Es ist [mm] $\bruch{-x^2-4x-2-(1)}{x+1}=-x-3 \to [/mm] -(-1)-3=-2$  für x [mm] \to [/mm] -1

FRED


>  Danke im Voraus
>  
>  


Bezug
                
Bezug
Grenzwert: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:24 Do 19.07.2012
Autor: Windbeutel

Danke dir, dann ist wohl die vorgegebene Lösung falsch.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]