matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGrenzwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Grenzwerte" - Grenzwert
Grenzwert < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Hilfe tip wie geht das
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:33 Mi 13.12.2006
Autor: Dummy86

Aufgabe
Man untersuche, ob folgende Grenzwerte existieren( auch uneigentlich) und berechne diese gegebenenfalss

[mm] a)\limes_{x\rightarrow 1}[/mm]  [mm] \bruch {(x^3+2x^2-10x+7)}{x-1}[/mm]

[mm] b)\limes_{z\rightarrow 0} [/mm] ([mm] \bruch {(exp(2z)-1)}{2z^2}[/mm] - [mm]\bruch {1}{z}[/mm])

[mm] c)\limes_{x\uparrow 0}[/mm]  [mm] \bruch {[x]}{x}[/mm]

[mm] d)\limes_{x\rightarrow\infty}[/mm]  [mm] \bruch {x^{[x]}}{exp(x)}[/mm]

Kann mir einer helfen wie dass geht, also grenzwert bestimmen ist kein problem, aber wie überprüfe ich ob folgende grenzwetre existieren? hat das was mit stetigkeit zu tun?

        
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:25 Mi 13.12.2006
Autor: celeste16

überprüfe vorher doch bitte noch deine Aufgaben:

bei b) geht da wirklich [mm] x\to0, [/mm] nicht doch eher z?
und bei d) musst du auch noch diesbezüglich ne angabe machen

Bezug
                
Bezug
Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:00 Mi 13.12.2006
Autor: Dummy86

es muss bei der b) heißen z [mm] \to [/mm] 0 und bei der d) x [mm] \to \infty [/mm]

sorry war nen tippfehler

Bezug
        
Bezug
Grenzwert: Tipps
Status: (Antwort) fertig Status 
Datum: 15:29 Mi 13.12.2006
Autor: informix

Hallo Dummy86,

versuche, die Brüche so umzuformen, dass beim Einsetzen der Grenzzahl im Nenner nicht mehr 0 entsteht.
Wenn das nicht geht, dann setze [mm] $x_0\pm [/mm] h$ für x ein und lass [mm] h\to0 [/mm] gehen; notfalls, indem du für h kleiner Zehnerbrüche einsetzt: 1/10, 1/100, ... und das Ergebnis beobachtest.

> Man untersuche, ob folgende Grenzwerte existieren( auch
> uneigentlich) und berechne diese gegebenenfalss
>  
> [mm]a)\limes_{x\rightarrow 1}[/mm]  [mm]\bruch {(x^3+2x^2-10x+7)}{x-1}[/mm]

MBPolynomdivision durchführen, dann x=1 einsetzen, fertig.

>  
> [mm]b)\limes_{z\rightarrow 0}[/mm] ([mm] \bruch {(exp(2z)-1)}{2z^2}[/mm] -
> [mm]\bruch {1}{z}[/mm])
>  
> [mm]c)\limes_{x\uparrow 0}[/mm]  [mm]\bruch {[x]}{x}[/mm]
>  
> [mm]d)\limes_{x\rightarrow\infty}[/mm]  [mm]\bruch {x^{[x]}}{exp(x)}[/mm]
>  
> Kann mir einer helfen wie dass geht, also grenzwert
> bestimmen ist kein problem, aber wie überprüfe ich ob
> folgende grenzwetre existieren? hat das was mit stetigkeit
> zu tun?

Bestimme die Grenzwerte; wenn du eine reelle zahl heraus bekommst, existieren die Grenzwerte, sonst eben nicht.

Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]