matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenGrenzwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Grenzwert
Grenzwert < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:25 Mo 11.05.2015
Autor: Killercat

Hallo,
ich habe eine Frage bezüglich der folgenden Funktion:
[mm]f(x) = \frac {1}{cos(x)} [/mm]
Es soll der Grenzwert [mm] x\rightarrow \frac{\pi}{2} [/mm] bestimmt werden, gefolgt von der Frage ob der Grenzwert auch im Komplexen existiert.

Ich hab mir bisher Gedanken gemacht, dass der cosinus in [mm] \frac {\pi}{2} [/mm] definiert ist, das heißt die Funktion f(x) würde gegen [mm]\frac {1}{0}[/mm] gehen, das kann aber auch genauso gut kompletter Mist sein.

Vielen dank schonmal

        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 13:35 Mo 11.05.2015
Autor: fred97


> Hallo,
>  ich habe eine Frage bezüglich der folgenden Funktion:
>  [mm]f(x) = \frac {1}{cos(x)}[/mm]
>  Es soll der Grenzwert
> [mm]x\rightarrow \frac{\pi}{2}[/mm] bestimmt werden, gefolgt von der
> Frage ob der Grenzwert auch im Komplexen existiert.
>  
> Ich hab mir bisher Gedanken gemacht, dass der cosinus in
> [mm]\frac {\pi}{2}[/mm] definiert ist, das heißt die Funktion f(x)
> würde gegen [mm]\frac {1}{0}[/mm] gehen, das kann aber auch genauso
> gut kompletter Mist sein.

Im Komplexen gilt (wie im Reellen):

[mm] \bruch{1}{|cos(z)|} \to \infty [/mm] ( z [mm] \to \frac {\pi}{2}) [/mm]

Die Funktion [mm] \bruch{1}{cos(z)} [/mm] ist auf [mm] \IC [/mm] meromorph und hat in [mm] \frac {\pi}{2} [/mm] einen Pol (1. Ordnung).

FRED

>  
> Vielen dank schonmal


Bezug
                
Bezug
Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:54 Mo 11.05.2015
Autor: Killercat

Danke für deine Antwort, den selben Grenzwert habe ich mit etwas Gehirnschmalz auch raus.

Was mich etwas wundert ist der Pol 1. Ordnung. Ich habe noch keine Laurentreihe zur Verfügung, könntest du kurz skizzieren wie man auf Ordnung 1 kommt?

Bezug
                        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 16:06 Mo 11.05.2015
Autor: fred97


> Danke für deine Antwort, den selben Grenzwert habe ich mit
> etwas Gehirnschmalz auch raus.
>  
> Was mich etwas wundert ist der Pol 1. Ordnung. Ich habe
> noch keine Laurentreihe zur Verfügung, könntest du kurz
> skizzieren wie man auf Ordnung 1 kommt?


Sei [mm] f(z):=\bruch{1}{cos(z)}. [/mm] f hat in [mm] \bruch{\pi}{2} [/mm] einen Pol der Ordnung 1

[mm] \gdw [/mm]

[mm] $\limes_{z\rightarrow \bruch{\pi}{2} }(z-\bruch{\pi}{2} [/mm] )f(z)$ ex. in [mm] \IC. [/mm]

wie fällt [mm] $\limes_{z\rightarrow \bruch{\pi}{2} }(z-\bruch{\pi}{2} [/mm] )f(z)$ aus ?

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]