matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieGleichgrad Integrierbar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitstheorie" - Gleichgrad Integrierbar
Gleichgrad Integrierbar < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichgrad Integrierbar: Konvergenz in WK.
Status: (Frage) beantwortet Status 
Datum: 10:57 Fr 26.05.2017
Autor: mathestudent222

Aufgabe
Seien [mm] $U_n,T_n$ [/mm] Zufallsvariablen, wobei [mm] $U_n$ [/mm] in Wahrscheinlichkeit gegen $a$ konvergiert und die Familie [mm] $(T_n)$ [/mm] gleichgradig integrierbar ist.

Wie kann ich formal zeigen, dass dann [mm] $T_n(U_n-a)$ [/mm] in Wahrscheinlichkeit gegen $0$ konvergiert?

        
Bezug
Gleichgrad Integrierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 14:41 So 28.05.2017
Autor: Gonozal_IX

Hiho,

die Folge [mm] T_n [/mm] ist gleichgradig integrierbar und damit gilt:

[mm] $\lim_{c\to\infty} \sup_{n\in\IN} \int_{\{|T_n| > c\}} |T_n| [/mm] dP = 0$

Insbesondere gilt daher erst recht: [mm] $c\sup_{n\in\IN}P(T_n [/mm] > c) [mm] \to [/mm] 0$ für [mm] $c\to\infty$ [/mm]

Damit ergibt sich:

$P( [mm] |T_n(U_n [/mm] - a)| [mm] \ge \varepsilon) [/mm] = P( [mm] |T_n(U_n [/mm] - a)| [mm] \ge \varepsilon, |T_n| [/mm] > c) + [mm] P(|T_n(U_n [/mm] - a)| [mm] \ge \varepsilon, |T_n| \le [/mm] c) [mm] \le P(|T_n| [/mm] > c) + [mm] P(c|U_n [/mm] -a| [mm] \ge \varepsilon) \le \sup_{n\in\IN} P(|T_n| [/mm] > c) + [mm] P(|U_n [/mm] -a| [mm] \ge \tilde\varepsilon)$ [/mm]
mit $ [mm] \tilde\varepsilon [/mm] = [mm] \frac{\varepsilon}{c}$ [/mm]

Zu zeigen ist, dass $P( [mm] |T_n(U_n [/mm] - a)| [mm] \ge \varepsilon) [/mm]  < [mm] \delta$ [/mm] für beliebes [mm] $\delta [/mm] > 0$ und n groß genug.
Wähle [mm] $c\in\IR$ [/mm] nun so groß, dass [mm] $\sup_{n\in\IN} P(|T_n| [/mm] > c) < [mm] \frac{\delta}{2}$ [/mm] (warum existiert das?) und n ausreichend groß, so dass [mm] $P(|U_n [/mm] -a| [mm] \ge \tilde\varepsilon) [/mm] < [mm] \frac{\delta}{2}$ [/mm] (warum existiert das?) und schon folgt das Gewünschte.

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]