matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenProzesse und MatrizenGesamtproduktionsvektor
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Prozesse und Matrizen" - Gesamtproduktionsvektor
Gesamtproduktionsvektor < Prozesse+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gesamtproduktionsvektor: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:03 So 04.03.2012
Autor: Apfelchips

Aufgabe
Drei nach dem Leontief-Modell verflochtene Zweigwerke Z1, Z2 und Z3 beliefern sich gegenseitig und den Markt.

Durch Lösen des ersten Aufgabenteils liegt die Produktionsmatrix A vor:

[mm]A = \pmat{ 0,6 & 0,1 & 0,1 \\ 0,2 & 0,6 & 0,2 \\ 0,4 & 0,2 & 0,4 } [/mm]

In einem anderen Produktionszeitraum [als in der hier nicht aufgeführten Aufgabe a)] ist der Marktvektor gegeben durch [mm]\vektor{5 \\ 20 \\ 30}[/mm].
Berechnen Sie den Gesamtproduktionsvektor.


Hier habe ich den guten alten Gauß-Algorithmus angewandt, komme da aber leider auf (meiner Meinung nach) unsinniges Ergebnis:

[mm]\left( \begin {array}{ccc|c} 0,6&0,1&0,1&5\\ 0,2&0,6&0,2&20\\ 0,4&0,2&0,4&30\end {array} \right) \left( \begin {array}{ccc|c} 0,6&0,1&0,1&5\\ 0&1,7&0,5&55\\ 0&-1&0&-10\end {array} \right)[/mm]

Weg zur zweien Matrix:
- Erste Zeile = aus 1. Zeile der 1. Matrix übernommen
- Zweite Zeile = (2. Zeile aus 1. Matrix * 3) - (1. Zeile aus 1. Matrix)
- Dritte Zeile = (3. Zeile aus 1. Matrix) - (2. Zeile aus 1. Matrix * 2)


Damit habe ich dann x1, x2 und x3 ermittelt:
-1x2 = -10
x2 = 10

1,7*10 + 0,5x3 = 55
0,5x3 = 38
x3 = 76

0,6x1 + 0,1*10 + 0,1*76 = 5
0,6x1 = -3,6
x1 = -6

Bei x1 = -6 bin ich dann stutzig geworden — den eine negative Produktion kann es ja gar nicht geben.

Ist schon mein Ansatz falsch oder habe ich zwischendurch Fehler gemacht?

        
Bezug
Gesamtproduktionsvektor: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Di 06.03.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]