matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenGerade in Hesseform
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Vektoren" - Gerade in Hesseform
Gerade in Hesseform < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gerade in Hesseform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:44 Do 25.05.2006
Autor: Goldfinger

Hallo,
wie kann ich eine Gerade ermitteln, die in Hesseform dargestellt werden soll, durch den Punkt [mm] B\B(5, \wurzel{3}) [/mm] geht und auf folgenden Vektor senkrecht steht:

[mm] \vec{x}= \vektor{0 \\ -8} \vektor{4 \\ -6} [/mm]

Die Hesseform hat folgendes Aussehen: [mm] <\<\vec{n}, \vec{xp}> [/mm] wobei ich vermuten würde, das [mm] \vec{xp} [/mm] aufgestellt wird: [mm] \vec{-OA} \vec{+OB} [/mm] also [mm] -\-0+5 [/mm] und [mm] -(-8)+\wurzel{3}. [/mm]
Ist die Vermutung richtig? Wie bekomme ich am einfachsten bzw. schnellsten die Hesseform hin?

Vielen Dank.
Gruß
Goldfinger




        
Bezug
Gerade in Hesseform: Hesse'sche Normalenform
Status: (Antwort) fertig Status 
Datum: 20:52 Do 25.05.2006
Autor: miniscout

Hallo!

>  wie kann ich eine Gerade ermitteln, die in Hesseform dargestellt
> werden soll, durch den Punkt [mm]B\B(5, \wurzel{3})[/mm] geht und auf folgenden Vektor
> senkrecht steht:

  

> [mm]\vec{x}= \vektor{0 \\ -8} \vektor{4 \\ -6}[/mm]

Das sind doch 2 Vektoren!?!?


> Die Hesseform hat folgendes Aussehen: [mm]<\<\vec{n}, \vec{xp}>[/mm] wobei ich vermuten würde,
> das [mm]\vec{xp}[/mm] aufgestellt wird:
> [mm]\vec{-OA} \vec{+OB}[/mm] also [mm]-\-0+5[/mm] und [mm]-(-8)+\wurzel{3}.[/mm] Ist die Vermutung richtig?
> Wie bekomme ich am einfachsten bzw. schnellsten die Hesseform hin?


Ich kenne (bis jetzt) die Hesse'sche Normalenform und die sieht so aus:

[mm] $\vec{x}*\vec{n}=c$ [/mm]

Die Normalengleichung für Geraden im 3-dimensionalen sieht so aus:

[mm] $(\vec{x}-\vec{p})*\vec{n}=0$ [/mm]

[mm] $\vektor{\vec{x}-\vektor{5 \\ \wurzel{3}}}*\vektor{0 \\ -8}=0$ [/mm]


Jetzt kannst du die einfach mit dem Skalarprodukt in die Hesse'sche Normalenform bringen. Meinstest du das so?
Ciao miniscout [sunny]





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]