matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenFunktionen und ableitungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionen" - Funktionen und ableitungen
Funktionen und ableitungen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen und ableitungen: Hilfe zum ansatz
Status: (Frage) beantwortet Status 
Datum: 15:18 Sa 20.01.2007
Autor: Dummy86

Aufgabe
Es sei f [mm]\in[/mm] [mm] C^{2} [/mm] ([0, 1]) mit f(0) = 0, f(1) = 1 sowie f'(0) = f'(1) = 0. Man
beweise oder widerlege: Es gibt [mm] \mu \in [/mm] [0,1] mit |f [mm] ''(\mu)|\ge [/mm] 2.

kann mir einer bei dieser aufgabe helfen bzw mir einen tipp oder ansatz geben
ich komme ich nicht voran damit.

gruß dummy 86

        
Bezug
Funktionen und ableitungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:42 So 21.01.2007
Autor: Dummy86

hat wirklich keiner einen tipp für mich schade


Bezug
        
Bezug
Funktionen und ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:14 Di 23.01.2007
Autor: MatthiasKr

Hallo dummy,
> Es sei f [mm][mm]\in[/mm] C^{2}[/mm] ([0, 1]) mit f(0) = 0, f(1) = 1 sowie f'(0) = f'(1) = 0. Man

beweise oder widerlege: Es gibt [mm]\mu \in[/mm] [0,1] mit |f [mm]''(\mu)|\ge[/mm] 2.
kann mir einer bei dieser aufgabe helfen bzw mir einen tipp oder ansatz geben
ich komme ich nicht voran damit.

gruß dummy 86

ich wuerde bei der aufgabe so vorgehen: erstmal eine idee kriegen, ob die aussage stimmt oder nicht mit einer geeigneten funktion, die die eigenschaften erfuellt. so eine funktion ist zB. der sinus, den du vom intervall [mm] $[-\pi/2,\pi/2]$ [/mm] auf $[0,1]$ transformieren kannst.

hast du ein gegenbeispiel bist du fertig, ansonsten musst du einen allgemeinen beweis durchfuehren.
bei der aufgabe bietet es sich ja an, den mittelwert satz der diff-rechnung anzuwenden, eventuell sogar mehr als einmal (!!).
versuch das mal.

gruss
matthias


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]