matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenFrage zu Unterräumen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Frage zu Unterräumen
Frage zu Unterräumen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage zu Unterräumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:48 Mi 11.05.2016
Autor: pc_doctor

Hallo,

ich habe eine Frage zu Unterräumen eines Vektorraumes.

Angenommen, wir haben einen V  K- Vektorraum mit Dimension n.

Dieser Vektorraum hat zwei Unterräume [mm] U_1 [/mm] und [mm] U_2. [/mm]

Kann man jetzt sagen, dass [mm] dim(U_1) [/mm] + [mm] dim(U_2) [/mm] = n sein darf (n = dim des Vektorraumes)?

Also kann man sagen, dass die Summe der Dimensionen der beiden Unterräume wieder die Dimension des Vektorraumes ergeben muss?

Vielen Dank im Voraus.

        
Bezug
Frage zu Unterräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Mi 11.05.2016
Autor: fred97


> Hallo,
>  
> ich habe eine Frage zu Unterräumen eines Vektorraumes.
>  
> Angenommen, wir haben einen V  K- Vektorraum mit Dimension
> n.
>  
> Dieser Vektorraum hat zwei Unterräume [mm]U_1[/mm] und [mm]U_2.[/mm]
>  
> Kann man jetzt sagen, dass [mm]dim(U_1)[/mm] + [mm]dim(U_2)[/mm] = n sein
> darf (n = dim des Vektorraumes)?
>  
> Also kann man sagen, dass die Summe der Dimensionen der
> beiden Unterräume wieder die Dimension des Vektorraumes
> ergeben muss?

Nein, das ist i.a. falsch.

Nimm den [mm] \IR^3 [/mm] und darin 2 geraden durch den Ursprung

fred

>
> Vielen Dank im Voraus.  


Bezug
                
Bezug
Frage zu Unterräumen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:25 Mi 11.05.2016
Autor: pc_doctor

Auch hier noch mal ein Dankeschön (Y).

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]