matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraFormale Exponentialreihe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - Formale Exponentialreihe
Formale Exponentialreihe < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Formale Exponentialreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:02 Sa 06.07.2013
Autor: Salamence

Aufgabe
Seien X und X nicht kommutierende Variabeln und exp bezeichne die formale Exponentialreihe. Zeigen Sie über [mm] \IQ [/mm] die Identität

$ exp(X+Y)= [mm] \limes_{n\rightarrow\infty} \big( exp(\frac{X}{n}) [/mm] exp( [mm] \frac{Y}{n}) \big)^{n} [/mm] $

Hallo,

irgendwie krieg ich es nicht hin, diese Identität zu zeigen. Auf der linken Seite kann man ja nicht viel machen, außer in den Summanden den binomischen Lehrsatz anzuwenden, der irgendwie nicht zu hilfreich zu sein scheint.
Die rechte Seite wäre ohne Limes, wenn ich nicht Unsinn gemacht hab
[mm] \sum_{\alpha, \beta \in \IN_{0}^{n}} \frac{X^{|\alpha|}Y^{|\beta|}}{\alpha ! \beta ! n^{|\alpha|+|\beta|}} [/mm] wobei [mm] \alpha!= \alpha_{1}! \dots \alpha_{n}! [/mm] und [mm] |\alpha|=\alpha_{1}+ \dots [/mm] + [mm] \alpha_{n} [/mm]

Und geht das nicht für n gegen unendlich gegen 1?

        
Bezug
Formale Exponentialreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 08:40 So 07.07.2013
Autor: fred97


> Seien X und X nicht kommutierende Variabeln


Du meinst wohl X und Y


> und exp
> bezeichne die formale Exponentialreihe. Zeigen Sie über
> [mm]\IQ[/mm] die Identität
>  
> [mm]exp(X+Y)= \limes_{n\rightarrow\infty} \big( exp(\frac{X}{n}) exp( \frac{Y}{n}) \big)^{n}[/mm]
>  
> Hallo,
>
> irgendwie krieg ich es nicht hin, diese Identität zu
> zeigen. Auf der linken Seite kann man ja nicht viel machen,
> außer in den Summanden den binomischen Lehrsatz
> anzuwenden, der irgendwie nicht zu hilfreich zu sein
> scheint.
> Die rechte Seite wäre ohne Limes, wenn ich nicht Unsinn
> gemacht hab
>  [mm]\sum_{\alpha, \beta \in \IN_{0}^{n}} \frac{X^{|\alpha|}Y^{|\beta|}}{\alpha ! \beta ! n^{|\alpha|+|\beta|}}[/mm]
> wobei [mm]\alpha!= \alpha_{1}! \dots \alpha_{n}![/mm] und
> [mm]|\alpha|=\alpha_{1}+ \dots[/mm] + [mm]\alpha_{n}[/mm]
>
> Und geht das nicht für n gegen unendlich gegen 1?  



Deine Freunde GOOGLE und FRED helfen Dir:

Lie–Trotter Produktformel:

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]