matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenFlächeninhalt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Ganzrationale Funktionen" - Flächeninhalt
Flächeninhalt < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhalt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:01 Mo 10.04.2006
Autor: NRWFistigi

Aufgabe
Der Graf von [mm] f(x)=x^3-3*x^2+4 [/mm] begrenzt mit den Koordinatenachsen im 1. Quadranten eine Fläche. Berechne deren Flächeninhalt.

Ist folgendes richtig?

A= [mm] \integral_{-1}^{0}{f(x) dx} [/mm] = |-2 [mm] \bruch{5}{6}|= [/mm] 2 [mm] \bruch{5}{6} [/mm]

        
Bezug
Flächeninhalt: Antwort
Status: (Antwort) fertig Status 
Datum: 16:10 Mo 10.04.2006
Autor: Disap

Moin moin.

> Der Graf von [mm]f(x)=x^3-3*x^2+4[/mm] begrenzt mit den

Auch wenn viele Leute das glauben, dass Graph sich wie Photo in Foto umgewandelt hat, stimmt das nicht. Graf ist und bleibt ein Adelstitel.

> Koordinatenachsen im 1. Quadranten eine Fläche. Berechne
> deren Flächeninhalt.

Danke für den Hinweis von Herby an der Stelle, das habe ich leider übersehen. Meinst du den 1. Quadranten oder den zweiten? Der erste Quadrant ist der positive. der oben recht... dann gehts gegen den Uhrzeigersinn.
Für den ersten Quadranten müsstest du eine andere Integralsgrenze nehmen, nämlich die der doppelten Nullstelle x=2!

>  Ist folgendes richtig?
>  
> A= [mm]\integral_{-1}^{0}{f(x) dx}[/mm] = |-2 [mm]\bruch{5}{6}|=[/mm] 2
> [mm]\bruch{5}{6}[/mm]  

[notok]
Also die Stammfunktion lautet:
[mm] \int x^3-3*x^2+4 [/mm] dx = [mm] \bruch{1}{4}x^4-x^3+4x [/mm]

Die Integralsgrenzen bei dir stimmen, herauskommt [mm] \bruch{11}{4} [/mm] = 2.75, allerdings nur für den zweiten Quadranten.

MfG!
Disap

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]