matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenFlächenbestimmung mit Parabel 
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Ganzrationale Funktionen" - Flächenbestimmung mit Parabel
Flächenbestimmung mit Parabel < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächenbestimmung mit Parabel : Aufgabe 1 und 2
Status: (Frage) für Interessierte Status 
Datum: 15:54 Di 15.02.2005
Autor: jeckham

Hallo!
Brauche Lösungswege zu den beiden Aufgaben:
1) Die Parabel k:  1 DURCH t² MAL x - x³ (t [mm] \varepsilon [/mm] R+) und die X-Achse begrenzen eine Fläche im 1. Quadranten
a) Gibt es einen Wert, für den der Inhalt der Fläche extremal wird?
b) Durch Rotation dieser Fläche um die X-Achse entsteht ein Drehkörper. Gibt es einen Wert t, für den sein Volumen maximal wird?

Aufgabe 2:
Jede zur y-Achse symmetrische Parabel 2. Grades durch P(1/1) begrenzt und der x-Achse und den geraden mit den Glecihungen x=1 und x=-1 eine Fläche, die bei der Rotation um die x-Achse einen Drehkörper bildet. Wann ist sein Volumen minimal?

Bis morgen brauch ich die Aufgaben, dann könnte ich mündlich glänzen!

        
Bezug
Flächenbestimmung mit Parabel : Sorry, aber so bitte nicht.
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:09 Di 15.02.2005
Autor: Andi

Hallo jeckham,

bitte lies dir unsere Forenregeln durch.
Sie ermöglichen eine vernünftige und effektive Arbeitsatmosphäre, deshalb ist es auch wichtig, dass auch du sie kennst und einhältst.

1) Wir erstellen keine Musterlösungen, sondern wollen sie mit dir zusammen erarbeiten.
2) Kurzfristige Fälligkeiswünsche vermeiden.

> Bis morgen brauch ich die Aufgaben, dann könnte ich
> mündlich glänzen!

Außerdem wäre es sehr schön wenn du unseren Formeleditor benutzt.
Dieser vereinfacht das Lesen der Aufgabe enorm.

Mit freundlichen Grüßen,
Andi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]