matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteFinden einer geschl. Formel
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Eigenwerte" - Finden einer geschl. Formel
Finden einer geschl. Formel < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Finden einer geschl. Formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:59 Mi 19.01.2005
Autor: spocky

Hallo zusammen...

Habe wieder eine aufgabe, die ich irgedwie nicht lösen kann.

Ich soll eine geschlossene Formel finden, also mit algebraischen Mitteln (Matrizen usw) für folgende Folge:

[mm] y_{0}:=y_{1}:= [/mm] 1
[mm] y_{n+1}:= 2y_{n} [/mm] + [mm] y_{n-1} [/mm]

Wie muss ich da ran gehen?
Kann mir jemand bei der Lösung helfen?

Danke!

        
Bezug
Finden einer geschl. Formel: Eigenwerte/Eigenvektoren
Status: (Antwort) fertig Status 
Datum: 11:06 Mi 19.01.2005
Autor: Paulus

Lieber spocky

> Hallo zusammen...
>  
> Habe wieder eine aufgabe, die ich irgedwie nicht lösen
> kann.
>  
> Ich soll eine geschlossene Formel finden, also mit
> algebraischen Mitteln (Matrizen usw) für folgende Folge:
>  
> [mm]y_{0}:=y_{1}:=[/mm] 1
>  [mm]y_{n+1}:= 2y_{n}[/mm] + [mm]y_{n-1} [/mm]
>  

Betrachte die Vektoren  [mm] $\vektor{y_{n-1}\\y_n}$ [/mm] und $ [mm] \vektor{y_n\\y_{n+1}}$ [/mm]

Jetzt versuchst du, eine Lineare Abbildung zu finden, die den ersten in den zweiten Vektor überführt.

Gemäss deiner Vorgabe muss ja aus  [mm] $\vektor{a\\b}$ [/mm] der Vektor $ [mm] \vektor{b\\a+2b}$ [/mm] entstehen.

Finde also die Abbildungsmatrix $A_$, wende diese auf den Anfangsvektor  [mm] $\vektor{1\\1}$ [/mm] n mal an, und du bist deiner Lösung schon recht nahe.

Das Problem ist dann aber, [mm] $A^n$ [/mm] zu berechnen. Du weisst aber, dass für Diagonalmatrizen $D_$ das [mm] $D^n$ [/mm] recht einfach zu berechnen ist. ;-)

Wenn du bereits mit dem Auffinden der Abbildungsmatrix Probleme hast, können wir das gemeinsam, Schritt für Schritt, schon durcharbeiten. Du musst dich halt einfach wieder melden. :-)

Mit lieben Grüssen

Paul

Bezug
                
Bezug
Finden einer geschl. Formel: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 19:31 Sa 22.01.2005
Autor: spocky

Also wenn ich das richtig sehe, müsste die Abbildung dann ja zB so aussehen

f: (a,b) -> (b, a+2b)    oder?

Wenn ich darauf jetzt  [mm] \vektor{1 \\ 1} [/mm] anwende, komm ich auf  [mm] \vektor{1 \\ 3} [/mm] ...
Und wie hilft mir das weiter?

Bin etwas verwirrt...

PS: Sorry dass ich erst jetzt wieder schreibe...


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]