matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenExistenz Lösung, maximal
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - Existenz Lösung, maximal
Existenz Lösung, maximal < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Existenz Lösung, maximal: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:58 Fr 03.09.2010
Autor: moerni

Aufgabe
Gegeben sei das AWP [mm] y'(t)=t^2+(y(t))^2, y(0)=y_0 [/mm] (Riccati-Gleichung).

1. Gibt es Anfangswerte derart, dass die zugehörige Lösung global definiert ist?
2. Wie verhalten sich die Lösungen am Rand ihres Existenzintervalls?

Hinweis: Machen Sie eine Fallunterscheidung [mm] y_0=0, y_0 \neq [/mm] 0 und konstruieren Sie ein "minorantes" AWP.

Hallo.

Ich brauche etwas Hilfe bei dieser Aufgabe.

Zu Frage 1.
Ich habe die DGL auf globale Lipschitzstetigkeit überprüft und rausgefunden, dass die DGL nicht global Lipschitzstetig ist (also die globale Version von Picard-Lindelöf nicht anwendbar), sonder nur lokal Lipschitzstetig ist. Nach der lokalen Version von Picard-Lindelöf existiert zu jedem Anfangswert eine Umgebung dieses Anfangswertes, in der das AWP eindeutig lösbar ist.

Also: ob eine Lösung global oder lokal existiert hängt bei Picard-Lindelöf ja nicht vom Anfangswert ab, sondern nur von der Lipschitzstetigkeit. Deswegen würde ich Frage 1 verneinen. Stimmt das??

Zu Frage 2.
Ich weiß erstmal nicht, was genau mit minorantem AWP gemeint ist. Ist damit gemeint, dass man eine Funktion x(t) konstruieren soll mit x(t) [mm] \le [/mm] y(t) für alle t oder mit x'(t) [mm] \le [/mm] y'(t) ?
Überlegung: wenn ich eine Funktion x(t) hätte mit x(t) [mm] \le [/mm] y(t) für alle t im Existenzintervall und ich wüsste, dass zb. x(t) [mm] \to \infty [/mm] für t gegen Rand des Existenzintervalls, dann würde y(t) auch gegen unendlich gehen. Damit könnte ich das Verhalten von y(t) beschreiben. Ist sowas gemeint?

Über eine Hilfe wäre ich sehr dankbar.
lg moerni

        
Bezug
Existenz Lösung, maximal: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Mi 08.09.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]