matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperEndomorphismenmenge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Endomorphismenmenge
Endomorphismenmenge < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Endomorphismenmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:22 Sa 15.11.2008
Autor: kittie

Hallo zusammen,

kann mir vielleicht jemand dabei helfen die Menge [mm] End(\IZ)=\{f:\IZ\rightarrow \IZ; f ist Homomorphismus \} [/mm] der Menge der Endomorphismen von [mm] (\IZ,+) [/mm] nach [mm] (\IZ,+) [/mm] zu bestimmen!?

Kann man das irgendwie geschickt anstellen, ohne alle Möglichkeiten auszuprobieren.

Habe bereits bewiesen, dass End(G) mit (G,+) abelscher Gruppe mit (f+g)(x):=f(x)+g(x) und (f*g)(x)=f(g(x)) ein Ring ist!

Viele Grüße

die kittie

        
Bezug
Endomorphismenmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 21:25 Sa 15.11.2008
Autor: andreas

hi

überlege dir, dass ein endmomorphismus $f: [mm] \mathbb{Z} \longrightarrow \mathbb{Z}$ [/mm] bereits durch $f(1)$ festgelegt ist (bestimme zuerst $f(n)$ für $n [mm] \in \mathbb{N}$ [/mm] in abhängigkeit von $f(1)$, dann auch für negative $n$). auf was kann man nun die $1$ abbilden?

grüße
andreas

Bezug
                
Bezug
Endomorphismenmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:37 Sa 15.11.2008
Autor: kittie

also das neutrale element muss ja auf sich selbst abgebildet werden in diesem fall, aufgrund der homomorphieeigenschaft!
Aber was meinst du mit der 1 bzw. f(1)?kann dir noch nicht ganz folgen, leider!
Kannst du mir mit einem Ansatz viell. nochmal weiterhelfen?

vg

Bezug
                        
Bezug
Endomorphismenmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 23:00 Sa 15.11.2008
Autor: andreas

hi

> also das neutrale element muss ja auf sich selbst
> abgebildet werden in diesem fall, aufgrund der
> homomorphieeigenschaft!

ja.


>  Aber was meinst du mit der 1 bzw. f(1)?kann dir noch nicht
> ganz folgen, leider!

angenommen es ist $f: [mm] \mathbb{Z} \longrightarrow \mathbb{Z}$ [/mm] ein endomorphismus. es sei $f(1) = m [mm] \in \mathbb{Z}$, [/mm] was ist dann $f(2)$ (bedenke $2 = 1 + 1$)? und was ist $f(3)$?


grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]