matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische StatistikEmpirischer Korrelationskoeffi
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "mathematische Statistik" - Empirischer Korrelationskoeffi
Empirischer Korrelationskoeffi < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Empirischer Korrelationskoeffi: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:33 So 08.02.2009
Autor: sask1a

Aufgabe
Warum ist der empirische Korrelationskoeffizient ein Maß für die lineare Abhängigkeit von zwei Merkmalen?

Ich weiß, dass bei [mm] r_{xy}=+1/-1 [/mm] ein vollständig linearer Zusammenhang zwischen den Merkmalen x und y besteht, und bei [mm] r_{xy}=0 [/mm] gar keiner.
Außerdem ist [mm] r_{xy}= \bruch{s_{xy}}{s_{x}s_{y}}. [/mm]
Aber was hat das genau zu bedeuten. Was vegleiche ich mit [mm] s_{xy} [/mm] und [mm] s_{x}s_{y} [/mm] um auf das Maß für die Abhängigkeit zu kommen?

        
Bezug
Empirischer Korrelationskoeffi: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 So 08.02.2009
Autor: luis52

Moin  saski1a,

die empirische Kovarianz [mm] $s_{xy}=\sum_{i=1}^n(x_i-\bar [/mm] x [mm] )(y_i-\bar [/mm] y )/n$ misst, wie sich $y$ verhaelt, wenn x steigt (gehen grosse oder kleine y-Werte mit steigenden x-Werten einher?)

Leider hat dieses Mass den Nachteil, dass seine Aussagekraft schwer zu interpretieren ist: Was besagt der Wert [mm] $s_{xy}=-4711$? [/mm] Deswegen ist man einer Normierung wie [mm] $r_{xy}$ [/mm] interessiert, fuer welches gilt [mm] $-1\le r_{xy}\le [/mm] +1$.

vg Luis
        

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]