matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieEindeutigkeit der Maßfortsetz.
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Maßtheorie" - Eindeutigkeit der Maßfortsetz.
Eindeutigkeit der Maßfortsetz. < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eindeutigkeit der Maßfortsetz.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:07 Mi 13.11.2013
Autor: Ladon

Hallo,

ich habe eine wahrscheinlich recht einfach zu beantwortende Frage, aber ich möchte eben sichergehen:

Satz:
Zwei Maße [mm] \mu [/mm] und [mm] \nu [/mm] auf einer [mm] \sigma [/mm] -Algebra [mm] \sigma(\mathcal{E}) in\Omega, [/mm] die auf den Erzeuger [mm] \mathcal{E} [/mm] eingeschränkt übereinstimmen, sind gleich auf [mm] \sigma(\mathcal{E}), [/mm] also [mm] \mu=\nu, [/mm] wenn
1.) [mm] A,B\in\mathcal{E} [/mm] => [mm] A\cap B\in\mathcal{E} [/mm]
2.) [mm] \exists (A_i)_{i\in\IN} [/mm] in [mm] \mathcal{E}: \bigcup_{i=1}^{\infty}A_i=\Omega [/mm] und [mm] \mu(A_i)=\nu(A_i)<\infty \forall n\in\IN. [/mm]

Der Satz sagt also aus, wann ein Maß Eindeutig ist. Wenn ich nun ein Maß [mm] \mu\not<\infty [/mm] habe, heißst das doch noch lange nicht, dass es nicht eindeutig sein kann. Ich kann dann nur den Satz nicht anwenden. Oder irre ich mich und es ist automatisch nicht eindeutig?

MfG Ladon

        
Bezug
Eindeutigkeit der Maßfortsetz.: Antwort
Status: (Antwort) fertig Status 
Datum: 08:32 Do 14.11.2013
Autor: fred97


> Hallo,
>
> ich habe eine wahrscheinlich recht einfach zu beantwortende
> Frage, aber ich möchte eben sichergehen:
>  
> Satz:
>  Zwei Maße [mm]\mu[/mm] und [mm]\nu[/mm] auf einer [mm]\sigma[/mm] -Algebra
> [mm]\sigma(\mathcal{E}) in\Omega,[/mm] die auf den Erzeuger
> [mm]\mathcal{E}[/mm] eingeschränkt übereinstimmen, sind gleich auf
> [mm]\sigma(\mathcal{E}),[/mm] also [mm]\mu=\nu,[/mm] wenn
>  1.) [mm]A,B\in\mathcal{E}[/mm] => [mm]A\cap B\in\mathcal{E}[/mm]

>  2.)
> [mm]\exists (A_i)_{i\in\IN}[/mm] in [mm]\mathcal{E}: \bigcup_{i=1}^{\infty}A_i=\Omega[/mm]
> und [mm]\mu(A_i)=\nu(A_i)<\infty \forall n\in\IN.[/mm]
>  
> Der Satz sagt also aus, wann ein Maß Eindeutig ist. Wenn
> ich nun ein Maß [mm]\mu\not<\infty[/mm] habe, heißst das doch noch
> lange nicht, dass es nicht eindeutig sein kann. Ich kann
> dann nur den Satz nicht anwenden.

Natürlich kannst Du ihn anwenden.

Ich formuliere den Satz mal so:

SATZ: Sei [mm] \mathcal{E} [/mm] eine nichtleere Teilmenge der Potenzmenge von [mm] \Omega [/mm] und  $ [mm] \mu [/mm] $ und $ [mm] \nu [/mm] $ seien Maße auf   [mm] \sigma(\mathcal{E}). [/mm]

[mm] \mathcal{E} [/mm]  habe die folgenden Eigenschaften:

1.) $ [mm] A,B\in\mathcal{E} [/mm] $ => $ [mm] A\cap B\in\mathcal{E} [/mm] $

2.) $ [mm] \exists (A_i)_{i\in\IN} [/mm] $ in $ [mm] \mathcal{E}: \bigcup_{i=1}^{\infty}A_i=\Omega [/mm] $ und $ [mm] \mu(A_i)=\nu(A_i)<\infty \forall n\in\IN. [/mm] $

Weiter gelte  

3.) $ [mm] \mu=\nu$ [/mm] auf  [mm] \mathcal{E} [/mm]  .

Dann gilt:  $ [mm] \mu=\nu$ [/mm] auf [mm] $\sigma( \mathcal{E} [/mm] )$ .

D.h.: Du kannst den Satz immer dann anwenden, wenn für  $ [mm] \mu, \nu$ [/mm] und  [mm] \mathcal{E} [/mm] die Vor. 1.) - 3.) erfüllt sind.

Natürlich darf für gewisse Mengen [mm] \mu= \infty [/mm] ausfallen, solange  eine Folge [mm] (A_i) [/mm] mit den Eig. in 2.) existiert.

FRED




> Oder irre ich mich und es
> ist automatisch nicht eindeutig?
>  
> MfG Ladon


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]