matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenEigenwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - Eigenwerte
Eigenwerte < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte: Aufgabe 2
Status: (Frage) beantwortet Status 
Datum: 21:08 Mo 03.10.2011
Autor: EtechProblem

Aufgabe
Die folgende Matrix hat Eigenwerte 1 und 2. Für welche Werte c und d exiestiert eine Basis des [mm] \IR^3 [/mm] aus Eigenvektoren der Matrix?
[mm] C=\pmat{ 1 & 0& 0 \\ c & 1 & 0 \\ 0&d&2} [/mm]



Abend leute ich noch mal :),

mein Ansatz hier zu ist [mm] C-\lambda*\vec{E} *\vektor{x \\ y\\ z} =\vektor{0 \\ 0\\0} [/mm]

und dann würde ich auf lineareunabhängigkeit prüfen. Das ding ist wenn ich das ausmultipliziere sind da 5 unbekannste unbekannte. Ist dene mein anstaz richtig?
Und ich muss dann vermutlich mit gauß das gleichungssystem lösen

MfG Etechproblem

        
Bezug
Eigenwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:12 Mo 03.10.2011
Autor: TheBozz-mismo

Hallo

Versuch bitte, nochmal die Aufgabenstellung richtig aufzuschreiben, denn ich versteh da nur Bahnhof.

Gruß
TheBozz-mismo

Bezug
        
Bezug
Eigenwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 21:42 Mo 03.10.2011
Autor: angela.h.b.


> Die folgende Matrix hat Eigenwerte 1 und 2. Für welche
> Werte c und d exiestiert eine Basis des [mm]\IR^3[/mm] aus
> Eigenvektoren der Matrix?
>  [mm]C=\pmat{ 1 & 0& 0 \\ c & 1 & 0 \\ 0&d&2}[/mm]

Hallo,

es ist also gefragt, für welche c,d die Matrix diagonalisierbar ist.
Du mußt also schauen, für welche c,d der Eigenraum zum Eigenwert 1 die Dimension 2 hat.

Gruß v. Angela


>
> Abend leute ich noch mal :),
>  
> mein Ansatz hier zu ist [mm]C-\lambda*\vec{E} *\vektor{x \\ y\\ z} =\vektor{0 \\ 0\\ 0}[/mm]
>
> und dann würde ich auf lineareunabhängigkeit prüfen. Das
> ding ist wenn ich das ausmultipliziere sind da 5
> unbekannste unbekannte. Ist dene mein anstaz richtig?
>  Und ich muss dann vermutlich mit gauß das
> gleichungssystem lösen
>  
> MfG Etechproblem


Bezug
                
Bezug
Eigenwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:59 Mo 03.10.2011
Autor: EtechProblem

Also ist man ansatz falsch? Könntest du mir einen Ansatz geben?

Bezug
                        
Bezug
Eigenwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 22:04 Mo 03.10.2011
Autor: MathePower

Hallo EtechProblem,


> Also ist man ansatz falsch? Könntest du mir einen Ansatz
> geben?  


Dein Ansatz ist im Grunde richtig.

Der Rang der Matrix C-E muss 1 sein.

Untersuche nun, für welche c,d das der Fall ist.


Gruss
MathePower

Bezug
                                
Bezug
Eigenwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:14 Mo 03.10.2011
Autor: EtechProblem

Also wenn ich jzt meinen ansatz ausmultipliziere sieht die neue gleichung so aus

[mm] \pmat{ 1-x & 0& 0 \\ c & 1-y & 0 \\ 0&d&2-x}=\vektor{0 \\ 0\\0} [/mm]

und dann beie ich dann vermutlich zu einer [mm] (C|b)=\pmat{ 1-x & 0& 0&|0 \\ c & 1-y & 0&|0 \\ 0&d&2-x&|0} [/mm]

und benutze das Gaußalgorithmus. Richtig soweit?


Bezug
                                        
Bezug
Eigenwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 23:28 Mo 03.10.2011
Autor: Blech

Junge, junge, junge.

Das:

> $ [mm] C-\lambda\cdot{}\vec{E} \cdot{}\vektor{x \\ y\\ z} =\vektor{0 \\ 0\\0} [/mm] $

muß so heißen:

$ [mm] \left(C-\lambda\cdot{}\vec{E}\right)\vektor{x \\ y\\ z} =\vektor{0 \\ 0\\0} [/mm] $


Wieso?

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]