matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesDiskrete Metrik
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Sonstiges" - Diskrete Metrik
Diskrete Metrik < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diskrete Metrik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:44 Di 21.06.2016
Autor: Mathe-Lily

Aufgabe
Diskrete Metrik: [mm] d(x,y) := \begin{cases} 0, & \mbox{für } x=y \\ 1, & \mbox{für } x \not= y \end{cases} [/mm]

Hallo!
Das ist keine richtige Aufgabe, aber ich habe versucht an diesem Beispiel die Begriffe offene Kugel [mm] U(x_0, r):= \{ x \in M | d(x,x_0) < r \} [/mm] und abgeschlossene Kugel [mm] B(x_0,r):= \{ x \in M | d(x,x_0) \le r \} [/mm] zu üben. Jetzt bin ich mir aber nicht sicher, ob ich da richtig bin: Ich habe [mm] r=1, x_0=0 [/mm] gesetzt, dann ist [mm] U(0,1)= \{ 0 \} = x_0, B(0,1)=M [/mm]. Stimmt das so weit?
Dann habe ich weiter überlegt, dass das eigentlich für jedes bel. [mm] x_0 [/mm] bei r=1 gelten müsste, also  [mm] U(x_0,1) = x_0, B(x_0,1)=M [/mm].
Und so kam ich von einem Fall zum anderen und habe nun folgende Fälle (für [mm] x_0 [/mm] beliebig):
[mm] r=0: U(x_0, 0)= \{ \}, B(x_0, 0)= x_0 01: U(x_0, r) = B(x_0, r) = M [/mm]

Kann da mal jemand drüber schauen? :-)
Liebe Grüße, Lily

        
Bezug
Diskrete Metrik: Antwort
Status: (Antwort) fertig Status 
Datum: 15:47 Di 21.06.2016
Autor: Gonozal_IX

Hiho,

> Ich habe [mm]r=1, x_0=0[/mm] gesetzt, dann ist [mm]U(0,1)= \{ 0 \} = x_0, B(0,1)=M [/mm].

[ok]

>  Dann habe ich weiter überlegt, dass das eigentlich für
> jedes bel. [mm]x_0[/mm] bei r=1 gelten müsste, also  [mm]U(x_0,1) = x_0, B(x_0,1)=M [/mm].

[ok]

> Und so kam ich von einem Fall zum anderen und habe nun
> folgende Fälle (für [mm]x_0[/mm] beliebig):
>  [mm]r=0: U(x_0, 0)= \{ \}, B(x_0, 0)= x_0[/mm]

[ok]

[mm]0 [ok]

[mm]r=1: U(x_0, r)= x_0 , B(x_0, r)= M[/mm]
[ok]

[mm]r>1: U(x_0, r) = B(x_0, r) = M[/mm]
[ok]

Und man erkennt: Bei der diskreten Metrik passiert eigentlich nichts spannendes ;-)


Gruß,
Gono

Bezug
                
Bezug
Diskrete Metrik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:50 Di 21.06.2016
Autor: Mathe-Lily

Yeah! Cool, danke! :-)

Bezug
        
Bezug
Diskrete Metrik: Antwort
Status: (Antwort) fertig Status 
Datum: 20:30 Di 21.06.2016
Autor: fred97


> Diskrete Metrik: [mm]d(x,y) := \begin{cases} 0, & \mbox{für } x=y \\ 1, & \mbox{für } x \not= y \end{cases}[/mm]
>  
> Hallo!
>  Das ist keine richtige Aufgabe, aber ich habe versucht an
> diesem Beispiel die Begriffe offene Kugel [mm]U(x_0, r):= \{ x \in M | d(x,x_0) < r \}[/mm]
> und abgeschlossene Kugel [mm]B(x_0,r):= \{ x \in M | d(x,x_0) \le r \}[/mm]
> zu üben. Jetzt bin ich mir aber nicht sicher, ob ich da
> richtig bin: Ich habe [mm]r=1, x_0=0[/mm]


Was ist denn die 0 ?  Wir be-



finden uns i.a. nicht in einem Vektorraum

fred


>  dann ist [mm]U(0,1)= \{ 0 \} = x_0, B(0,1)=M [/mm].
> Stimmt das so weit?
>  Dann habe ich weiter überlegt, dass das eigentlich für
> jedes bel. [mm]x_0[/mm] bei r=1 gelten müsste, also  [mm]U(x_0,1) = x_0, B(x_0,1)=M [/mm].
> Und so kam ich von einem Fall zum anderen und habe nun
> folgende Fälle (für [mm]x_0[/mm] beliebig):
>  [mm]r=0: U(x_0, 0)= \{ \}, B(x_0, 0)= x_0 01: U(x_0, r) = B(x_0, r) = M[/mm]
>  
> Kann da mal jemand drüber schauen? :-)
>  Liebe Grüße, Lily


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]