matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeDirektes Produkt ein K-VR ?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Moduln und Vektorräume" - Direktes Produkt ein K-VR ?
Direktes Produkt ein K-VR ? < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Direktes Produkt ein K-VR ?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:14 So 17.05.2009
Autor: Doemmi

Aufgabe
Es seien K ein Körper sowie V und W K-Vektorräume. Man zeige, dass das direkte Produkt V [mm] \times [/mm] W versehen mit den Verknüpfungen (v,w) + (v',w') := (v+v', w+w') und [mm] \lambda(v,w) [/mm] := [mm] (\lambdav, \lambdaw) [/mm] für v,v' [mm] \in [/mm] V, w,w' [mm] \in [/mm] W, [mm] \lambda \in [/mm] K wieder ein K-Vektorraum ist.

Ich hab leider nicht wirklich eine Ahnung, wie ich vorgehe. Ich schätze mal, dass ich zeigen muss, dass das direkte Produkt abelsch (assoziativ, neutrales Element, inverses Element) ist. Doch wie sieht dieses Produkt genau aus?
Muss ich die beiden Verknüpfungen + und * einzeln betrachten?
Also: (v,v') * (w,w') = (v*w, v'*w')
und (v,v') + (w,w') = (v+w, v'+w')
Mir fehlt gerade wirklich der Durchblick, was genau zu tun ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Direktes Produkt ein K-VR ?: Antwort
Status: (Antwort) fertig Status 
Datum: 17:29 So 17.05.2009
Autor: leduart

Hallo
Produkt von Vektoren gehoert nicht zu einem VR.
Die Addition und Multipl mit einem [mm] \lambda \in [/mm] K ist ja definiert.
damm musst du nur zeigen, dass fuer die neuen Elemente von V/times W alle Vektorraumaxime erfuellt sind.
Die schreibst du einfach erstmal hin, und zeigst dann eins nach dem anderen.
Gruss leduart


Bezug
                
Bezug
Direktes Produkt ein K-VR ?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:43 So 17.05.2009
Autor: Doemmi

Wie sehen denn die neuen Elemente von V [mm] \times [/mm] W aus?

Ist es nun korrekt wenn ich zum Beispiel für die Assoziativität schreibe:

(v,v') + (w,w') = (v+w, v'+w') = (w+v, w'+v') = (w,w') + (v,v')

Wie ist das "Produkt von Vektoren gehoert nicht zu einem VR." gemeint? Ich habe doch die Verknüpfung * gegeben.

Bezug
                        
Bezug
Direktes Produkt ein K-VR ?: Antwort
Status: (Antwort) fertig Status 
Datum: 18:22 So 17.05.2009
Autor: pumpernickel

vielleicht könnte man das mit hilfe eines skalarproduktes (für einen K-vr nimm einfach das sog. pseudo-skalarprodukt ,das dort existieren müsste)
mit dem du dann die gesetze nachrechnen kannst.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]