matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationDifferenzieren einer Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differentiation" - Differenzieren einer Funktion
Differenzieren einer Funktion < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzieren einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:56 Mo 12.01.2009
Autor: katerkarlo

Aufgabe
Zeigen Sie mit der Definition der Differenzierbarkeit, dass die Funktion g differenzierbar ist und bestimmen sie die Ableitung mittels der Definiton der Ableitung.

g(x) = [mm] \begin{cases} -3x + sin (x)/x & \ne 0\\ 1 & x=0 \end{cases} [/mm]

Wenn ich das richtig sehe, ist die Definition der Differenzierbarkeit doch ziemlich gleich der Ableitung. Nun versuche ich den ersten Fall zu differenzieren.

[mm] \lim\limits_{h \to 0} \frac{1}{h} \left( g(x+h) - g(x) \right) [/mm]
[mm] \\= \lim\limits_{h \to 0} \frac{1}{h} \left( -3(x+h) + sin (x+h)/(x+h) - (-3x + sin(x)/x) \right) [/mm]
[mm] \\= \lim\limits_{h \to 0} \frac{1}{h} \left( -3h + sin (x+h)/(x+h) - sin(x)/x \right) [/mm]
[mm] \\= \lim\limits_{h \to 0} [/mm] -3 + [mm] \frac{1}{h} \left(sin (x+h)/(x+h) - sin(x)/x \right) [/mm]

An dieser Stelle komme ich nicht weiter. Wie kann ich das geschickt umstellen?

        
Bezug
Differenzieren einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:31 Mo 12.01.2009
Autor: reverend

Weiß ich auch nicht.
Ich würde auch viel einfacher anfangen und erstmal die Stelle [mm] x_0=0 [/mm] auf Differenzierbarkeit untersuchen; auf Stetigkeit hast Du sie doch sicher schon untersucht.

[mm] \limes_{x\rightarrow 0_+}\bruch{-3x+\bruch{\sin{x}}{x}-1}{x}=\limes_{x\rightarrow 0_+}-3+\bruch{\bruch{\sin{x}}{x}-1}{x} [/mm]

Und jetzt würde ich meinen Freund, Herrn de l'Hospital, einladen.

Wenn ich dann endlich weiß, dass die Funktion auch in [mm] x_0=0 [/mm] differenzierbar ist, würde ich mich an Deine Rechnung machen. Da ich ja schon (heimlich) ableiten kann, weiß ich auch, wohin mein Grenzwert gehen wird...
Vielleicht hilft ja schon ein einfacher Hauptnenner. ;-)

lg,
reverend



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]