matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenDifferentiation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Differentiation
Differentiation < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentiation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:42 Fr 25.09.2009
Autor: moerni

Aufgabe
Differentieren Sie die Gleichung [mm] f(x,y,\phi(x,y))=0 [/mm] nach x.

Hallo,
die Lösung ist angegeben, ich kann Sie aber gar nicht nachvollziehen:

[mm] (D_1f)(x,y,\phi(x,y))+(D_3f)(x,y,\phi(x,y))\bruch{\partial\phi}{\partial x}(x,y)=0 [/mm]

Als Hinweis ist gegeben, dass die Kettenregel angewendet werden muss.
Wie kommt man auf das Ergebnis? Kann mir jemand weiterhelfen?
moerni

        
Bezug
Differentiation: Antwort
Status: (Antwort) fertig Status 
Datum: 14:48 Fr 25.09.2009
Autor: Marcel

Hallo,

> Differentieren Sie die Gleichung [mm]f(x,y,\phi(x,y))=0[/mm] nach
> x.
>  Hallo,
>  die Lösung ist angegeben, ich kann Sie aber gar nicht
> nachvollziehen:
>  
> [mm](D_1f)(x,y,\phi(x,y))+(D_3f)(x,y,\phi(x,y))\bruch{\partial\phi}{\partial x}(x,y)=0[/mm]
>  
> Als Hinweis ist gegeben, dass die Kettenregel angewendet
> werden muss.
>  Wie kommt man auf das Ergebnis? Kann mir jemand
> weiterhelfen?

wenn Du die Kettenregel anwendest, so ergibt sich doch
[mm] $$\frac{d}{dx}f(x,y,\phi(x,y))=\Big(\frac{\partial f}{\partial x}(x,y,\phi(x,y)),\frac{\partial f}{\partial y}(x,y,\phi(x,y)), \frac{\partial f}{\partial z}(x,y,\phi(x,y))\Big)*\vektor{\frac{\partial x}{\partial x}\\\frac{\partial y}{\partial x}\\\frac{\partial \phi(x,y)}{\partial x}}\,.$$ [/mm]

(Für festes [mm] $y\,$ [/mm] setze [mm] $g_y(x)=g(x):=(x,y,\phi(x,y))$ [/mm] (beachte: [mm] $y\,$ [/mm] ist unabhängig von [mm] $x\,$), [/mm] und dann beachte, dass $(f [mm] \circ g)(x)=f\left(\vektor{x\\y\\\phi(x,y)}\right)=f(x,y,\phi(x,y))$; [/mm] und dann arbeite mit der Kettenregel.)

Der Rest ist eine einfache Matrixmultiplikation und Verwendung von [mm] $\partial y/\partial [/mm] x [mm] \equiv [/mm] 0$ sowie [mm] $\partial [/mm] x [mm] /\partial [/mm] x [mm] \equiv 1\,.$ [/mm]

Gruß,
Marcel

Bezug
                
Bezug
Differentiation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:08 Fr 25.09.2009
Autor: moerni

Danke!

...

> (Für festes [mm]y\,[/mm] setze [mm]g_y(x)=g(x):=(x,y,\phi(x,y))[/mm]
> (beachte: [mm]y\,[/mm] ist unabhängig von [mm]x\,[/mm])

dadrauf muss man erstmal kommen... dann ists klar, wenn ich die Funktion g habe.
Grüße, moerni


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]