matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisDifferentialrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Differentialrechnung
Differentialrechnung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:10 Fr 18.06.2004
Autor: andreas99

Überprüfen Sie die folgende Aussage (Beweis oder Gegenbeispiel): Alle reelen Zahlen y,z mit 0 < y < z und alle natürlichen Zahlen n  [mm] \ge [/mm] 1 erfüllen die Beziehung:

n [mm] \cdot y^{n-1} \le \bruch{ z^{n}-y^{n}}{z-y} \le [/mm] n [mm] \cdot z^{n-1} [/mm]

Ich finde einfach keinen Ansatz für diese Aufgabe. Dummerweise will/muss ich dieses Aufgabenblatt bis heute Nachmittag fertig haben deshalb die etwas kurze Interessen-Zeit. Falls es niemand schafft mir in dieser Zeit ein paar Tips zu geben freue ich mich trotzdem auch später über ein paar Tips.

Gruß
Andreas

        
Bezug
Differentialrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:13 Fr 18.06.2004
Autor: Marc

Hallo andreas99,

[willkommenmr]

Guckst du hier :-)

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]