matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisDiff.barkeit+offene Mengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - Diff.barkeit+offene Mengen
Diff.barkeit+offene Mengen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diff.barkeit+offene Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:24 So 08.03.2009
Autor: ronja33

Aufgabe
Es seinen U  [mm] \subseteq \IC [/mm] offen und f: U [mm] \to \IC [/mm] differenzierbar in [mm] z_{0} \in [/mm] U. Man setze V = [mm] {\overline{z} : z \in U} [/mm]
a) Beweisen Sie, dass V offen ist.
b) Man definiere g: V [mm] \to \IC [/mm] durch g(z) = [mm] \overline{f(\overline{z})} [/mm]
    Beweisen sie, dass g in [mm] \overline{z_{0}} [/mm] differenzierbar ist und dass gilt [mm] g'(\overline{z}) [/mm] = [mm] \overline{f'(z_{0}} [/mm] für alle z [mm] \in [/mm] V
c) Man definiere h: V [mm] \to \IC [/mm] durch h(z) = [mm] f(\overline{z}). [/mm] Untersuchen Sie, wann h in [mm] z_{0} [/mm] differenzierbar ist.

Hallo,

bin hier ziemlich überfragt:(.
a) Wie beweist man, dass V offen ist?
b) Sollte man hier die Cauchy-Riemann-Differentialgleichungen verwenden?

Weiß leider gar nicht, wie ich die Beweise führen könnte.

Vielen Dank für jede Hilfe im Voraus!

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Diff.barkeit+offene Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:31 So 08.03.2009
Autor: Somebody


> Es seinen U  [mm]\subseteq \IC[/mm] offen und f: U [mm]\to \IC[/mm]
> differenzierbar in [mm]z_{0} \in[/mm] U. Man setze V = [mm]{\overline{z} : z \in U}[/mm]
>  
> a) Beweisen Sie, dass V offen ist.
>  b) Man definiere g: V [mm]\to \IC[/mm] durch g(z) =
> [mm]\overline{f(\overline{z})}[/mm]
>      Beweisen sie, dass g in [mm]\overline{z_{0}}[/mm]
> differenzierbar ist und dass gilt [mm]g'(\overline{z})[/mm] =
> [mm]\overline{f'(z_{0}}[/mm] für alle z [mm]\in[/mm] V
>  c) Man definiere h: V [mm]\to \IC[/mm] durch h(z) =
> [mm]f(\overline{z}).[/mm] Untersuchen Sie, wann h in [mm]z_{0}[/mm]
> differenzierbar ist.
>  Hallo,
>  
> bin hier ziemlich überfragt:(.
> a) Wie beweist man, dass V offen ist?

Jedes Element von $V$ lässt sich als [mm] $\overline{z}_0$ [/mm] mit [mm] $z_0\in [/mm] U$ darstellen. Da $U$ offen ist, gibt es ein [mm] $\varepsilon>0$ [/mm] mit [mm] $\{z\in \IC\;:\; |z-z_0|<\varepsilon\}\subseteq [/mm] U$. Daraus folgt aber sogleich, dass auch [mm] $\{z\in \IC\;:\; |z-\overline{z}_0|<\varepsilon\}=\{\overline{z}\in \IC\;:\; |\overline{z}-\overline{z}_0|<\varepsilon\}\subseteq \overline{U}=V$ [/mm] ist, denn

[mm]|\overline{z}-\overline{z}_0|=|\overline{z-z_0}|=|z-z_0| < \varepsilon[/mm]


>  b) Sollte man hier die
> Cauchy-Riemann-Differentialgleichungen verwenden?

Ich würde etwas simpler vorgehen und einfach den Limes

[mm]g'(\overline{z}_0)=\lim_{\overline{z}\rightarrow \overline{z}_0}\frac{g(\overline{z})-g(\overline{z}_0)}{\overline{z}-\overline{z}_0}[/mm]


unter Verwendung der Eigenschaften der Konjugation auf die gewünschte Form zu bringen versuchen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]