matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDgl 3. Ordnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Dgl 3. Ordnung
Dgl 3. Ordnung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dgl 3. Ordnung: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:09 So 10.01.2010
Autor: Leipziger

Aufgabe
Bestimmen Sie die allgemeine Lösung der Differentialgleichung:

y'''-y''-y'+y=0

Hallo,

allein aus der Überlegung heraus würde ich sagen, dass [mm] y=C*e^x [/mm] ist.
Aber nun zur Rechnung.

Zuerst muss ich das ja eine gleichwertig Dgl 1.Ordnung umformen, dazu:

[mm] y_1=y [/mm]
[mm] y_2=y_1'=y' [/mm]
[mm] y_3=y_2'=y'' [/mm]

damit [mm] y_3'=y_3+y_2-y. [/mm] Nun muss ich doch das charakt. Polynom ausrechenn oder?


Gruß Leipziger

        
Bezug
Dgl 3. Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:26 So 10.01.2010
Autor: ullim

Hi,

das Characteristische Polynom kannst Du direkt aus der Dgl. ablesen

[mm] \lambda^3-\lambda^2-\lambda+1=0 [/mm]

Eine Nullstelle bekommt man durch raten [mm] (\lambda_1=-1) [/mm] die anderen durch Polynomdivision.

Lösungen der Dgl. sind Funktionen der Form

[mm] f(x)=x^{r-1}e^{\lambda{x}} [/mm] mit r=Vielfachheit der Nullstelle des characteristischen Polynoms

mfg ullim

Bezug
                
Bezug
Dgl 3. Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:38 So 10.01.2010
Autor: Leipziger

Dann wäre die 2. Nullstelle bei [mm] \lambda_2=1. [/mm]

also [mm] y_1=e^x, y_2=e^{-x} [/mm] ?

Gruß Leipziger

Bezug
                        
Bezug
Dgl 3. Ordnung: aufpassen
Status: (Antwort) fertig Status 
Datum: 12:44 So 10.01.2010
Autor: Loddar

Hallo Leipziger!


> Dann wäre die 2. Nullstelle bei [mm]\lambda_2=1.[/mm]

[ok]

  

> also [mm]y_1=e^x, y_2=e^{-x}[/mm] ?

[aufgemerkt] [mm] $\lambda [/mm] \ = \ +1$ ist eine doppelte Nullstelle!


Gruß
Loddar


Bezug
                                
Bezug
Dgl 3. Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:50 So 10.01.2010
Autor: Leipziger

Da hast du nicht Unrecht Loddar :)

somit ist [mm] y_1=x*e^x [/mm]

Gruß Leipziger

Bezug
                                        
Bezug
Dgl 3. Ordnung: Fast
Status: (Antwort) fertig Status 
Datum: 13:15 So 10.01.2010
Autor: Infinit

Fast stimmt es, aber zu einer doppelten Nullstelle gehören auch immer zwei unabhängige Lösungen, in diesem Falle [mm] e^x [/mm] und [mm] x \cdot e^x [/mm].
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]