matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesDefinitionsbereich
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis-Sonstiges" - Definitionsbereich
Definitionsbereich < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definitionsbereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:32 So 11.10.2009
Autor: Nils92

Aufgabe
Ich habe nur eine Verständnisfrage

Meine Frage lautet: Beinhaltet das Zeichen (Reelle positive/negative Zahlen), das sind die wo über dem R noch ein + oder - steht, eigentlich auch den Wert/die Zahl 0?

zB.:

f(x)= [mm] \wurzel{\bruch{4}{-x}} [/mm]

Dann is der Definitionsbereich ja alle negativen Zahlen und NICHT Null, da wollte ich wissen ob ich dort schreiben kann Definitionsbereich = alle negativen reelen Zahlen...

??

        
Bezug
Definitionsbereich: Antwort
Status: (Antwort) fertig Status 
Datum: 22:41 So 11.10.2009
Autor: Marcel

Hallo Nils,

> Ich habe nur eine Verständnisfrage
>  Meine Frage lautet: Beinhaltet das Zeichen (Reelle
> positive/negative Zahlen), das sind die wo über dem R noch
> ein + oder - steht, eigentlich auch den Wert/die Zahl 0?
>
> zB.:
>  
> f(x)= [mm]\wurzel{\bruch{4}{-x}}[/mm]
>  
> Dann is der Definitionsbereich ja alle negativen Zahlen und
> NICHT Null, da wollte ich wissen ob ich dort schreiben kann
> Definitionsbereich = alle negativen reelen Zahlen...
>  
> ??

das ist Vereinbarungssache. Der eine definiert [mm] $\IR^-:=\{r \in \IR: r < 0\},\,$ [/mm] jmd. anderes vll. [mm] $\IR^-:=\{r \in \IR: r \le 0\}\,.$ [/mm]

Jmd. der [mm] $\IR^-:=\{r \in \IR: r < 0\}$ [/mm] benützt, schreibt dann vll. auch [mm] $\IR^-_0:=\{r \in \IR: r \le 0\}\,.$ [/mm]

Ähnliches gilt für die Sprechweise "negative Zahlen". Die einen meinen damit alle reellen Zahlen [mm] $<\,0$, [/mm] andere wiederum alle reellen Zahlen [mm] $\le [/mm] 0$, und sagen für alle reellen Zahlen [mm] $<\,0$ [/mm] dann "echt negative Zahlen".

Ich selbst umgehe das Problem in der Symbolik mit [mm] $\IR^-$ [/mm] meist so, dass ich einfach [mm] $\IR_<:=\{r \in \IR: r < 0\}$ [/mm] und [mm] $\IR_{\le}:=\{r \in \IR: r \le 0\}$ [/mm] schreibe. Ich denke, Du solltest aber am besten nochmal Rücksprache mit Deinem Lehrer halten, ob er [mm] $\IR^-$ [/mm] für [mm] $\IR_{<}$ [/mm] oder [mm] $\IR_{\le}$ [/mm] schreibt, und Dir am besten auch eine Begründung geben lassen, warum er dies so tut, damit Dir das im Gedächtnis bleibt.

Bzgl. [mm] $f(x)=\sqrt{\frac{-4}{x}}$ [/mm] ist der "maximale Definitionsbereich (bzgl. [mm] $\IR$)" [/mm] - was immer man damit nun auch präzise meinen mag; aber es ist intuitiv klar, was gemeint ist - sicher nicht [mm] $\IR_{\le}$, [/mm] sondern in der Tat [mm] $\IR_{<}$, [/mm] also alle reellen Zahlen [mm] $<\,0\,.$ [/mm]

P.S.:
Heuser (Lehrbuch der Analysis, Band 1, 14.Auflage) definiert z.B. [mm] $\IR^+=\{r \in \IR: r > 0\}$ [/mm] und nennt dies die Menge der positiven (reellen) Zahlen. Analog wären dann genau alle (reellen) Zahlen [mm] $<\,0$ [/mm] dann in der Menge [mm] $\IR^-$ [/mm] enthalten, und dies wäre somit (bzgl. [mm] $\IR$) [/mm] der (maximale) Definitionsbereich von [mm] $f(x)=\sqrt{\frac{-4}{x}}\,.$ [/mm]

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]