matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenDarstellende Mat der dual Abb
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Darstellende Mat der dual Abb
Darstellende Mat der dual Abb < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Darstellende Mat der dual Abb: Beweis
Status: (Frage) überfällig Status 
Datum: 21:52 Mo 09.12.2013
Autor: tkgraceful

Aufgabe
[mm] \mathcal [/mm] B Basis von V und [mm] \mathcal [/mm] C Basis von W, dann ist
[mm] M^{\mathcal C^*}_{\mathcal B^*}(f^*) [/mm] = [mm] (M^{\mathcal B}_{\mathcal C}(f))^T [/mm]

Der Beweis im Skript lautet: [mm] \mathcal [/mm] B = [mm] (v_1,\hdots ,v_n), \mathcal [/mm] C = [mm] (w_1,\hdots, w_m) [/mm] und entsprechend [mm] \mathcal [/mm] B^* = [mm] (v_1^*,\hdots, v_n^*) [/mm] und [mm] \mathcal [/mm] C^* = [mm] (w_1^*,\hdots, w_m^*). [/mm]
Sei [mm] A=(a_{ij}):=M^{\mathcal B}_{\mathcal C}(f) (\in M_{m\times n}(K)). [/mm]
Nach Definition gilt also
[mm] f(v_j)=\sum_{i=1}^m a_{ij}w_i (j=1,\hdots [/mm] n)

Wir müssen also die [mm] f^*(w_j^*) [/mm] durch die [mm] v_i^* [/mm] ausdrücken.

Soweit erstmal...

Um die darstellende Matrix zu berechnen, muss ich aber doch die Koordinaten der Bilder der Basisvektoren haben und bei [mm] M^{\mathcal C^*}_{\mathcal B^*}(f^*) [/mm]  also die Koordinaten der f^*-Bilder der Basisvektoren von [mm] \mathcal [/mm] C^*.

Also muss ich doch zeigen, dass [mm] f^*(w_i)=\sum_{j=1}^na_{ji}v_j [/mm] gilt, oder nicht?

        
Bezug
Darstellende Mat der dual Abb: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Mi 11.12.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]