matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeDarst. der Lösung eines LGS
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Gleichungssysteme" - Darst. der Lösung eines LGS
Darst. der Lösung eines LGS < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Darst. der Lösung eines LGS: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:57 Mo 20.09.2010
Autor: Stefan-auchLotti

Hallo,

wie ja bekannt ist, lässt sich die allgemeine Lösung eines inhomogenen LGS so darstellen lässt:

[mm] $$L(A,b)=k_0+L(A,0)$$ [/mm]

wobei [mm] $k_0$ [/mm] eine Lösung des inhomogenen Systems ist.

Wenn wir nun ein inhomogenes LGS mit einem Freiheitsgrad haben, so ist das kein Problem: wir schreiben z.B.

[mm] $$\vektor{0 \\ 0\\2\\0\\2}+\left\langle\vektor{0\\1\\0\\2\\0}\right\rangle$$ [/mm]

Wie schreibt man's aber auf, wenn die allgemeine Lösung des inh. LGS zwei oder mehr frei wählbare Parameter enthält, also z.B. folgende Form hat:

[mm] $\left\{\vektor{b\\a+b\\4\\5\\2b}~\vrule~a,b\in \IF_{4}\right\}$ [/mm]

        
Bezug
Darst. der Lösung eines LGS: Antwort
Status: (Antwort) fertig Status 
Datum: 13:13 Mo 20.09.2010
Autor: angela.h.b.


> Hallo,
>  
> wie ja bekannt ist, lässt sich die allgemeine Lösung
> eines inhomogenen LGS so darstellen lässt:
>  
> [mm]L(A,b)=k_0+L(A,0)[/mm]
>  
> wobei [mm]k_0[/mm] eine Lösung des inhomogenen Systems ist.
>  
> Wenn wir nun ein inhomogenes LGS mit einem Freiheitsgrad
> haben, so ist das kein Problem: wir schreiben z.B.
>  
> [mm]\vektor{0 \\ 0\\ 2\\ 0\\ 2}+\left\langle\vektor{0\\ 1\\ 0\\ 2\\ 0}\right\rangle[/mm]
>  
> Wie schreibt man's aber auf, wenn die allgemeine Lösung
> des inh. LGS zwei oder mehr frei wählbare Parameter
> enthält, also z.B. folgende Form hat:
>  
> [mm]\left\{\vektor{b\\ a+b\\ 4\\ 5\\ 2b}~\vrule~a,b\in \IF_{4}\right\}[/mm]

Hallo,

Du kannst dann schreiben

[mm] \vektor{0\\0\\4\\5\\0}+<\vektor{0\\1\\0\\0\\0},\vektor{1\\1\\0\\0\\2}>_{\IF_4}. [/mm]

Gruß v. Angela

P.S.: Eigentlich hat es nichts mit Deiner Frage zu tun, aber was ist eigentlich mit [mm] \IF_4 [/mm] genau gemeint? Der Körper mit 4 Elementen? Und was bedeuten die Einträge 4 und 5 im Spaltenvektor? Mich irritiert das gerade etwas...






Bezug
                
Bezug
Darst. der Lösung eines LGS: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:25 Mo 20.09.2010
Autor: Stefan-auchLotti

Dankeschön :)

Genau, das ist der Restklassenkörper [mm] $\IZ/ 4\IZ$. [/mm]

4 und 5 sind in dem Zusammenhang dann natürlich 0 und 1, hab ich gar nicht dran gedacht.

Bis bald,

Stefan.

Bezug
                        
Bezug
Darst. der Lösung eines LGS: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:44 Mo 20.09.2010
Autor: angela.h.b.


> Genau, das ist der Restklassenkörper [mm]\IZ/ 4\IZ[/mm].

[mm] $\IZ/ 4\IZ$ [/mm] ist aber kein Körper...

Gruß v. Angela



Bezug
                                
Bezug
Darst. der Lösung eines LGS: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:34 Mo 20.09.2010
Autor: Stefan-auchLotti

Bei mir war 4 gerade eine Primzahl. ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]