matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDGL 1. Ordung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - DGL 1. Ordung
DGL 1. Ordung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL 1. Ordung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:02 Mi 13.09.2006
Autor: Tequilla

[Dateianhang nicht öffentlich]
Hallo!
Hier geht es um DGLs 1. Ordung:

allegmeine frage:

Wie wählt man die Konstanten C? Z.B wenn ich das Integral
[mm] \integral_{}^{}{\bruch{1}{x} dx} [/mm] habe und dann es ausrechne, dann füge ich nach dem rechenvorgan noch eine Konstate C hinzu.
Dann kommt raus ln(x)+C raus. Doch in der rechnung bei der a) habe wir das C in das ln eingesetzt. Also so: ln(x+C)
Das ist für mich was anderes als das da vor. Kann mir das vielleicht einer erklären?

2. Frage. Welche Substitution sollte man bei b) verwenden? ich habe es mit [mm] \bruch{y^{2}}{x} [/mm] versucht, aber wird sehr unangenehm.


danke schon im voraus!

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
DGL 1. Ordung: Logarithmusgesetz
Status: (Antwort) fertig Status 
Datum: 08:51 Mi 13.09.2006
Autor: Loddar

Hallo Tequilla!



> Wie wählt man die Konstanten C? Z.B wenn ich das Integral
> [mm]\integral_{}^{}{\bruch{1}{x} dx}[/mm] habe und dann es
> ausrechne, dann füge ich nach dem rechenvorgan noch eine
> Konstate C hinzu.
> Dann kommt raus ln(x)+C raus. Doch in der rechnung bei der
> a) habe wir das C in das ln eingesetzt. Also so: ln(x+C)

Das soll aber bestimmt [mm] $\ln(x\red{\times}C)$ [/mm] heißen (also mit Multiplikation), oder?


> Das ist für mich was anderes als das da vor. Kann mir das
> vielleicht einer erklären?

Das ist im Prinzip egal, wie Du das machst. Bei der genannten Lösung sparst Du allerdings ein/zwei Umformungsschritte. Denn Du kannst eine Variante in die andere überführen durch Anwendung eines MBLogarithmusgesetzes [mm] $\log_b(x)+\log_b(y) [/mm] \ = \ [mm] \log_b(x*y)$ [/mm] :

[mm] $\ln(x) [/mm] + C \ = \ [mm] \ln(x)+\ln\left(e^C\right) [/mm] \ = \ [mm] \ln\left(x*e^C\right)$ [/mm]

Da auch [mm] $e^C$ [/mm] wieder konstant ist, kann man abkürzen zu: [mm] $C^\star [/mm] \ := \ [mm] e^C$ [/mm] . Damit wird dann: [mm] $\ln\left(x*e^C\right) [/mm] \ = \ [mm] \ln\left(x*C^\star\right)$ [/mm] .


Gruß
Loddar


Bezug
                
Bezug
DGL 1. Ordung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mi 13.09.2006
Autor: Tequilla

Und nochmals danke Loddar;-)

Und hast damit recht, dass da eine multipilkation sein sollte. Der Prof hat sich da einen Flüchtigkeitsfehler erlaubt.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]