matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisDGL 1. Ordnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - DGL 1. Ordnung
DGL 1. Ordnung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL 1. Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:03 So 06.11.2005
Autor: Biene_Hamburg

Hallo liebe Leute,

ich bin mit dem Kopf wohl irgendwie noch in den Semesterferien, ich habe ein Problem, das wahrscheinlich supereinfach ist, aber ich kriegs nicht hin.

Es geht um die sog. "allgemeine" DGL, diese lautet  

y' = [mm] f(\bruch{a*x+b*y+c}{\alpha*x+\beta*y+\gamma}) [/mm]

und dies unter der Bedingung das  

det  [mm] \pmat{ a & b \\ \alpha & \beta } \not= [/mm] 0


Ich hab das ganze in mehreren Schritten umgeformt, habe die beiden Geraden in den Ursprung verschoben und einiges substituiert und bin nun hier:

[mm] \bruch{cdz}{dc} [/mm] =  [mm] \bruch{a + bz - \alpha*z - \beta*z^2}{\alpha + \beta*z} [/mm]


wer kann mir weiterhelfen????  
eigentlich muß ich doch nur noch sortieren, die beiden integrale lösen und zurücksubstituieren, oder??

        
Bezug
DGL 1. Ordnung: Hinweis
Status: (Antwort) fertig Status 
Datum: 21:02 So 06.11.2005
Autor: MathePower

Hallo Biene_Hamburg,

> Hallo liebe Leute,
>
> ich bin mit dem Kopf wohl irgendwie noch in den
> Semesterferien, ich habe ein Problem, das wahrscheinlich
> supereinfach ist, aber ich kriegs nicht hin.
>
> Es geht um die sog. "allgemeine" DGL, diese lautet  
>
> y' = [mm]f(\bruch{a*x+b*y+c}{\alpha*x+\beta*y+\gamma})[/mm]
>  
> und dies unter der Bedingung das  
>
> det  [mm]\pmat{ a & b \\ \alpha & \beta } \not=[/mm] 0
>  
>
> Ich hab das ganze in mehreren Schritten umgeformt, habe die
> beiden Geraden in den Ursprung verschoben und einiges
> substituiert und bin nun hier:
>  
> [mm]\bruch{cdz}{dc}[/mm] =  [mm]\bruch{a + bz - \alpha*z - \beta*z^2}{\alpha + \beta*z}[/mm]

hier hast Du f als linear angenommen.

>  
>
> wer kann mir weiterhelfen????  
> eigentlich muß ich doch nur noch sortieren, die beiden
> integrale lösen und zurücksubstituieren, oder??

Ja.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]