matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Sonstiges(C1-)Diffeomorphismus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Sonstiges" - (C1-)Diffeomorphismus
(C1-)Diffeomorphismus < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

(C1-)Diffeomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:30 Mo 09.12.2013
Autor: Herbart

Hallo zusammen,

ich habe eine kurze Frage zur Notation. Bisher sind mir immer nur [mm] C^k [/mm] -Diffeomorphismen begegnet. Nun wird in einer Aufgabe von einem "Diffeomorphismus" gesprochen.
Nach Wikipedia ist "ein Diffeomorphismus eine bijektive, stetig differenzierbare Abbildung, deren Umkehrabbildung auch stetig differenzierbar ist."
Meine Frage daher: Wenn man von einem "Diffeomorphismus" spricht meint man damit immer einen [mm] C^1 [/mm] -Diffeomorphismus?

MfG Herbart

        
Bezug
(C1-)Diffeomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 10:44 Mo 09.12.2013
Autor: fred97


> Hallo zusammen,
>  
> ich habe eine kurze Frage zur Notation. Bisher sind mir
> immer nur [mm]C^k[/mm] -Diffeomorphismen begegnet. Nun wird in einer
> Aufgabe von einem "Diffeomorphismus" gesprochen.
> Nach Wikipedia ist "ein Diffeomorphismus eine bijektive,
> stetig differenzierbare Abbildung, deren Umkehrabbildung
> auch stetig differenzierbar ist."
> Meine Frage daher: Wenn man von einem "Diffeomorphismus"
> spricht meint man damit immer einen [mm]C^1[/mm] -Diffeomorphismus?

Ja

FRED

>  
> MfG Herbart


Bezug
                
Bezug
(C1-)Diffeomorphismus: Injektivität
Status: (Frage) beantwortet Status 
Datum: 11:28 Mo 09.12.2013
Autor: Herbart

Danke Fred! Noch eine kurze Frage zur Injektivität. Allein aufgrund der Definition von Injektivität halte ich es für sinnvoll, Injektivität auch für Fkt. durch [mm] f(x_1,...,x_n)=f(x_1,...,x_n) \Rightarrow (x_1,...,x_n)=(x_1,...,x_n) [/mm] zu zeigen. Bevor ich mich an den Beweis begebe, möchte ich wissen, ob dies wirklich so "sinnvoll" ist.

MfG Herbart

Bezug
                        
Bezug
(C1-)Diffeomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 11:34 Mo 09.12.2013
Autor: Gonozal_IX

Hiho,

> Danke Fred! Noch eine kurze Frage zur Injektivität. Allein
> aufgrund der Definition von Injektivität halte ich es für
> sinnvoll, Injektivität auch für Fkt. durch
> [mm]f(x_1,...,x_n)=f(x_1,...,x_n) \Rightarrow (x_1,...,x_n)=(x_1,...,x_n)[/mm]

eigentlich ist da nichts zu zeigen, da obiges eine Tautologie ist.

Wenn du aber meinst, dass du Injektivität durch

[mm]f(x_1,...,x_n)=f(y_1,...,y_n) \Rightarrow (x_1,...,x_n)=(y_1,...,y_n)[/mm]

zeigen willst, dann ist das ok (wobei ich mich fragen will, wie du es sonst zeigen willst, denn so ist Injektivität ja definiert).

Gruß,
Gono.

Bezug
                                
Bezug
(C1-)Diffeomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mo 09.12.2013
Autor: Herbart

Tut mir Leid. Natürlich meinte ich
$ [mm] f(x_1,...,x_n)=f(y_1,...,y_n) \Rightarrow (x_1,...,x_n)=(y_1,...,y_n) [/mm] $
Vielen Dank!

MfG Herbart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]