matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungBogenlänge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Bogenlänge
Bogenlänge < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bogenlänge: Kleiner Tipp
Status: (Frage) beantwortet Status 
Datum: 19:59 So 26.04.2009
Autor: AbraxasRishi

Aufgabe
[mm] y=ln(x^2-1)[/mm] in [0;0.5]

Hallo!

Irgendwie hänge ich bei dieser Funktion fest und mich würde es beruhigen, wenn mir jemand einen kleinen Tipp geben würde oder mich in meinen Ansätzen bestätigen würde:

[mm]\integral{\sqrt{1+(\frac{-2x}{1-x^2})^2}dx}[/mm]

Nun habe ich bereits [mm]u=\sqrt{1+(\frac{-2x}{1-x^2})^2}[/mm] und [mm]\frac{-2x}{1-x^2}=sinh(u)[/mm] versucht, erhalte jedoch im 1. Fall [mm](\frac{-2x}{1-x^2})(\frac{-2(x^2+1)}{(1-x^2)^2})[/mm] im 2. [mm] \frac{-2(x^2+1)}{(1-x^2)^2}als [/mm] "Rest" bei dem ich noch nicht draufgekommen bin wie mitsubstituieren. Bin ich mit einem dieser Fälle auf der richtigen Spur?

Gruß

Angelika

        
Bezug
Bogenlänge: Antwort
Status: (Antwort) fertig Status 
Datum: 20:10 So 26.04.2009
Autor: schachuzipus

Hallo Angelika,

> [mm]y=ln(x^2-1)[/mm] in [0;0.5]
>  Hallo!
>  
> Irgendwie hänge ich bei dieser Funktion fest und mich würde
> es beruhigen, wenn mir jemand einen kleinen Tipp geben
> würde oder mich in meinen Ansätzen bestätigen würde:
>  
> [mm]\integral{\sqrt{1+(\frac{-2x}{1-x^2})^2}dx}[/mm] [ok]
>  
> Nun habe ich bereits [mm]u=\sqrt{1+(\frac{-2x}{1-x^2})^2}[/mm] und
> [mm]\frac{-2x}{1-x^2}=sinh(u)[/mm] versucht, erhalte jedoch im 1.
> Fall [mm](\frac{-2x}{1-x^2})(\frac{-2(x^2+1)}{(1-x^2)^2})[/mm] im 2.
> [mm]\frac{-2(x^2+1)}{(1-x^2)^2}als[/mm] "Rest" bei dem ich noch
> nicht draufgekommen bin wie mitsubstituieren. Bin ich mit
> einem dieser Fälle auf der richtigen Spur?

Es geht viel einfacher:

Unter der Wurzel steht [mm] $1+\left(\frac{2x}{x^2-1}\right)^2=\frac{x^4-2x^2+1+4x^2}{(x^2-1)^2}=\left(\frac{x^2+1}{x^2-1}\right)^2=\left(1+\frac{2}{x^2-1}\right)^2$ [/mm]

Nun löse die Wurzel auf, um den hinteren Bruch [mm] $\frac{2}{x^2-1}$ [/mm] zu integrieren, mache eine Partialbruchzerlegung:

Ansatz: [mm] $\frac{2}{x^2-1}=\frac{A}{x+1}+\frac{B}{x-1}$... [/mm]

>  
> Gruß
>  
> Angelika


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]