matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenBlockmatrix.Determinante
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Determinanten" - Blockmatrix.Determinante
Blockmatrix.Determinante < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Blockmatrix.Determinante: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:31 Mi 14.03.2012
Autor: Lu-

Aufgabe
Seien m, n [mm] \in \IN, [/mm] A [mm] \in M_{n \times n} (\IK), [/mm] B [mm] \in M_{n \times m} (\IK), [/mm] C [mm] \in M_{m \times n } (\IK) [/mm] und D [mm] \in M_{m \times m} (\IK) [/mm]
Berechne
det [mm] \pmat{ A & B \\ C & 0 } [/mm]


Also was ich schnmal bewiesen habe ist
det [mm] \pmat{ A & B \\ 0 & D } [/mm] = [mm] \pmat{ A & 0 \\ C & D } [/mm] = det(A)*det(D)

[mm] \pmat{ A & B\\ C & 0 } [/mm]
Ich hab versucht, dass in zwei Matrizen aufzuspalten ist mir aber nie ganz gelungen.
LG

        
Bezug
Blockmatrix.Determinante: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:49 Mi 14.03.2012
Autor: Schadowmaster

$B$ und $C$ sind nicht quadratisch?
Dann dürfte das problematisch werden, das in Abhängigkeit von $A,B,C$ anzugeben.

lg

Schadow

Bezug
                
Bezug
Blockmatrix.Determinante: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:59 Mi 14.03.2012
Autor: Lu-

Ja das ist richtig abgeschrieben, aber das B, C nicht quadratisch galt auch für den Beweis det $ [mm] \pmat{ A & B \\ 0 & D } [/mm] $ = $det [mm] \pmat{ A & 0 \\ C & D } [/mm] $ = det(A)*det(D)
Kann man das nicht irgendwie darauf zurückführen?

Bezug
                        
Bezug
Blockmatrix.Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 23:13 Mi 14.03.2012
Autor: Schadowmaster

jain, hier sind $A$ und $D$ quadratisch, das reicht.
Aber guck dir meine andere Antwort an, das dürfte reichen.
Sind sie quadratisch kannst du etwas sehr ähnliches basteln, sind sie nicht quadratisch muss ja wohl entweder m>n oder n>m sein; in beiden Fällen ist die Determinante 0.

Bezug
        
Bezug
Blockmatrix.Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 23:12 Mi 14.03.2012
Autor: Schadowmaster

Ist $m=n$, überlege dir wie die Formel mit Hilfe von $det(B)$ und $det(C)$ aussieht.
Ist $m [mm] \neq [/mm] n$, so ist die Determinante 0 - finde dafür linear abhängige Zeilen oder Spalten.

lg

Schadow

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]